Previous |  Up |  Next

Article

Title: Fermionic Novikov algebras admitting invariant non-degenerate symmetric bilinear forms (English)
Author: Chen, Zhiqi
Author: Chen, Xueqing
Author: Ding, Ming
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 4
Year: 2020
Pages: 953-958
Summary lang: English
.
Category: math
.
Summary: Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and Hamiltonian operators in the formal variational calculus. Fermionic Novikov algebras correspond to a certain Hamiltonian superoperator in a supervariable. In this paper, we show that fermionic Novikov algebras equipped with invariant non-degenerate symmetric bilinear forms are Novikov algebras. (English)
Keyword: Novikov algebra
Keyword: fermionic Novikov algebra
Keyword: invariant bilinear form
MSC: 17A30
MSC: 17B60
MSC: 17D25
idZBL: 07285972
idMR: MR4181789
DOI: 10.21136/CMJ.2020.0071-19
.
Date available: 2020-11-18T09:42:47Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148404
.
Reference: [1] Balinskii, A. A., Novikov, S. P.: Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras.Sov. Math., Dokl. 32 (1985), 228-231 translated from Dokl. Akad. Nauk SSSR 283 1985 1036-1039. Zbl 0606.58018, MR 0802121
Reference: [2] Burde, D.: Simple left-symmetric algebras with solvable Lie algebra.Manuscr. Math. 95 (1998), 397-411 erratum ibid. 96 1998 393-395. Zbl 0907.17008, MR 1612015, 10.1007/s002290050037
Reference: [3] Dubrovin, B. A., Novikov, S. P.: Hamiltonian formalism of one-dimensional systems of hydrodynamic type, and the Bogolyubov-Whitham averaging method.Sov. Math., Dokl. 27 (1983), 665-669 translated from Dokl. Akad. Nauk SSSR 270 1983 781-785. Zbl 0553.35011, MR 0715332
Reference: [4] Dubrovin, B. A., Novikov, S. P.: On Poisson brackets of hydrodynamic type.Sov. Math., Dokl. 30 (1984), 651-654 translated from Dokl. Akad. Nauk SSSR 279 1984 294-297. Zbl 0591.58012, MR 0770656
Reference: [5] Gel'fand, I. M., Dikii, L. A.: Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations.Russ. Math. Surv. 30 (1975), 77-113 translated from Usp. Mat. Nauk 30 1975 67-100. Zbl 0334.58007, MR 0508337, 10.1070/RM1975v030n05ABEH001522
Reference: [6] Gel'fand, I. M., Dikii, L. A.: A Lie algebra structure in a formal variational calculation.Funct. Anal. Appl. 10 (1976), 16-22 translated from Funkts. Anal. Prilozh. 10 1976 18-25. Zbl 0347.49023, MR 0467819, 10.1007/BF01075767
Reference: [7] Gel'fand, I. M., Dorfman, I. Ya.: Hamiltonian operators and algebraic structures related to them.Funkts. Anal. Prilozh. Russian 13 (1979), 13-30. Zbl 0428.58009, MR 0554407
Reference: [8] Guediri, M.: Novikov algebras carrying an invariant Lorentzian symmetric bilinear form.J. Geom. Phys. 82 (2014), 132-144. Zbl 1361.17003, MR 3206645, 10.1016/j.geomphys.2014.04.007
Reference: [9] O'Neill, B.: Semi-Riemannian Geometry with Applications to Relativity.Pure and Applied Mathematics 103, Academic Press, New York (1983). Zbl 0531.53051, MR 0719023
Reference: [10] Vinberg, E. B.: The theory of convex homogeneous cones.Trans. Mosc. Math. Soc. 12 (1963), 340-403 translated from Tr. Mosk. Mat. O. 12 1963 303-358. Zbl 0138.43301, MR 0158414
Reference: [11] Xu, X.: Hamiltonian operators and associative algebras with a derivation.Lett. Math. Phys. 33 (1995), 1-6. Zbl 0837.16034, MR 1315250, 10.1007/BF00750806
Reference: [12] Xu, X.: Hamiltonian superoperators.J. Phys. A, Math. Gen. 28 (1995), 1681-1698. Zbl 0852.58043, MR 1338053, 10.1088/0305-4470/28/6/021
Reference: [13] Xu, X.: Variational calculus of supervariables and related algebraic structures.J. Algebra 223 (2000), 396-437. Zbl 1012.37048, MR 1735154, 10.1006/jabr.1999.8064
Reference: [14] Zel'manov, E.: On a class of local translation invariant Lie algebras.Sov. Math., Dokl. 35 (1987), 216-218 translated from Dokl. Akad. Nauk SSSR 292 1987 1294-1297. Zbl 0629.17002, MR 0880610
.

Files

Files Size Format View
CzechMathJ_70-2020-4_4.pdf 252.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo