Previous |  Up |  Next

Article

Title: Compression of slant Toeplitz operators on the Hardy space of $n$-dimensional torus (English)
Author: Datt, Gopal
Author: Pandey, Shesh Kumar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 4
Year: 2020
Pages: 997-1018
Summary lang: English
.
Category: math
.
Summary: This paper studies the compression of a $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb {T}^n)$ for integers $k\ge 2$ and $n\ge 1$. It also provides a characterization of the compression of a $k$th-order slant Toeplitz operator on $H^2(\mathbb {T}^n)$. Finally, the paper highlights certain properties, namely isometry, eigenvalues, eigenvectors, spectrum and spectral radius of the compression of $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb {T}^n)$ of $n$-dimensional torus $\mathbb {T}^n$. (English)
Keyword: Toeplitz operator
Keyword: compression of slant Toeplitz operator
Keyword: $n$-dimensional torus
Keyword: Hardy space
MSC: 47B35
idZBL: 07285975
idMR: MR4181792
DOI: 10.21136/CMJ.2020.0088-19
.
Date available: 2020-11-18T09:44:12Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148407
.
Reference: [1] Arora, S. C., Batra, R.: On generalized slant Toeplitz operators.Indian J. Math. 45 (2003), 121-134. Zbl 1067.47038, MR 2035900
Reference: [2] Arora, S. C., Batra, R.: Generalized slant Toeplitz operators on $H^2$.Math. Nachr. 278 (2005), 347-355. Zbl 1087.47033, MR 2121563, 10.1002/mana.200310244
Reference: [3] Datt, G., Pandey, S. K.: Slant Toeplitz operators on Lebesgue space of $n$-dimensional torus.(to appear) in Hokkaido Math. J.
Reference: [4] Ding, X., Sun, S., Zheng, D.: Commuting Toeplitz operators on the bidisk.J. Funct. Anal. 263 (2012), 3333-3357. Zbl 1284.47024, MR 2984068, 10.1016/j.jfa.2012.08.005
Reference: [5] Ho, M. C.: Spectra of slant Toeplitz operators with continuous symbol.Mich. Math. J. 44 (1997), 157-166. Zbl 0907.47017, MR 1439675, 10.1307/mmj/1029005627
Reference: [6] Halmos, P. R.: Hilbert Space Problem Book.Graduate Texts in Mathematics 19. Springer, New York (1982). Zbl 0496.47001, MR 0675952, 10.1007/978-1-4684-9330-6
Reference: [7] Ho, M. C.: Spectral Properties of Slant Toeplitz Operators: Ph.D. Thesis.Purdue-University, West Lafayette (1996). MR 2695217
Reference: [8] Lu, Y. F., Zhang, B.: Commuting Hankel and Toeplitz operators on the Hardy space of the bidisk.J. Math. Res. Expo. 30 (2010), 205-216. Zbl 1225.47031, MR 2656608, 10.3770/j.issn:1000-341X.2010.02.002
Reference: [9] Maji, A., Sarkar, J., Sarkar, S.: Toeplitz and asymptotic Toeplitz operators on $H^2(\mathbb{D}^n)$.Bull. Sci. Math. 146 (2018), 33-49. Zbl 06893935, MR 3812709, 10.1016/j.bulsci.2018.03.005
Reference: [10] Peller, V.: Hankel Operators and Their Applications.Springer Monographs in Mathematics. Springer, New York (2003). Zbl 1030.47002, MR 1949210, 10.1007/978-0-387-21681-2
Reference: [11] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces.Princeton Mathematical Series 32. Princeton University Press, Princeton (1971). Zbl 0232.42007, MR 0304972, 10.1515/9781400883899
.

Files

Files Size Format View
CzechMathJ_70-2020-4_7.pdf 364.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo