Previous |  Up |  Next

Article

Title: Measure-geometric Laplacians for partially atomic measures (English)
Author: Kesseböhmer, Marc
Author: Samuel, Tony
Author: Weyer, Hendrik
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 3
Year: 2020
Pages: 313-335
Summary lang: English
.
Category: math
.
Summary: Motivated by the fundamental theorem of calculus, and based on the works of W. Feller as well as M. Kac and M.\,G. Kreĭn, given an atomless Borel probability measure $\eta$ supported on a compact subset of $\mathbb R$ U. Freiberg and M. Zähle introduced a measure-geometric approach to define a first order differential operator $\nabla_{\eta}$ and a second order differential operator $\Delta_{\eta}$, with respect to $\eta$. We generalize this approach to measures of the form $\eta := \nu + \delta$, where $\nu$ is non-atomic and $\delta$ is finitely supported. We determine analytic properties of $\nabla_{\eta}$ and $\Delta_{\eta}$ and show that $\Delta_{\eta}$ is a densely defined, unbounded, linear, self-adjoint operator with compact resolvent. Moreover, we give a systematic way to calculate the eigenvalues and eigenfunctions of $\Delta_{\eta}$. For two leading examples, we determine the eigenvalues and the eigenfunctions, as well as the asymptotic growth rates of the eigenvalue counting function. (English)
Keyword: Kreĭn--Feller operator
Keyword: spectral asymptotics
Keyword: harmonic analysis
MSC: 35P20
MSC: 42B35
MSC: 47G30
idZBL: Zbl 07286007
idMR: MR4186110
DOI: 10.14712/1213-7243.2020.026
.
Date available: 2020-11-27T07:39:48Z
Last updated: 2022-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148469
.
Reference: [1] Arzt P.: Measure theoretic trigonometric functions.J. Fractal Geom. 2 (2015), no. 2, 115–169. MR 3353090, 10.4171/JFG/18
Reference: [2] Beals R., Greiner P. C.: Strings, waves, drums: spectra and inverse problems.Anal. Appl. (Singap.) 7 (2009), no. 2, 131–183. MR 2513598, 10.1142/S0219530509001335
Reference: [3] Berry M. V.: Distribution of modes in fractal resonators.Structural Stability in Physics, Proc. Internat. Symposia Appl. Catastrophe Theory and Topological Concepts in Phys., Inst. Inform. Sci., Univ. Tübingen, 1978, Springer Ser. Synergetics, 4, Springer, Berlin, 1979, pages 51–53. MR 0556688, 10.1007/978-3-642-67363-4_7
Reference: [4] Berry M. V.: Some geometric aspects of wave motion: wavefront dislocations, diffraction catastrophes, diffractals.Geometry of the Laplace operator, Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979, Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, 1980, pages 13–28. MR 0573427
Reference: [5] Biggs N.: Algebraic Graph Theory.Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993. Zbl 0797.05032, MR 1271140
Reference: [6] Ehnes T.: Stochastic heat equations defined by fractal Laplacians on Cantor-like sets.available at arXiv: 1902.02175v2 [math.PR] (2019), 27 pages.
Reference: [7] Feller W.: Generalized second order differential operators and their lateral conditions.Illinois J. Math. 1 (1957), 459–504. MR 0092046, 10.1215/ijm/1255380673
Reference: [8] Freiberg U.: A survey on measure geometric Laplacians on Cantor like sets.Wavelet and fractal methods in science and engineering, Part I., Arab. J. Sci. Eng. Sect. C Theme Issues 28 (2003), no. 1, 189–198. MR 2030736
Reference: [9] Freiberg U.: Analytical properties of measure geometric Krein–Feller-operators on the real line.Math. Nachr. 260 (2003), 34–47. MR 2017701, 10.1002/mana.200310102
Reference: [10] Freiberg U.: Spectral asymptotics of generalized measure geometric Laplacians on Cantor like sets.Forum Math. 17 (2005), no. 1, 87–104. MR 2110540, 10.1515/form.2005.17.1.87
Reference: [11] Freiberg U., Zähle M.: Harmonic calculus on fractals---a measure geometric approach. I.Potential Anal. 16 (2002), no. 3, 265–277. MR 1885763, 10.1023/A:1014085203265
Reference: [12] Fujita T.: A fractional dimension, self-similarity and a generalized diffusion operator.Probabilistic Methods in Mathematical Physics, Katata/Kyoto, 1985, Academic Press, Boston, 1987, pages 83–90. MR 0933819
Reference: [13] Gordon C., Webb D., Wolpert S.: Isospectral plane domains and surfaces via Riemannian orbifolds.Invent. Math. 110 (1992), no. 1, 1–22. MR 1181812, 10.1007/BF01231320
Reference: [14] Halmos P. R.: Measure Theory.D. Van Nostrand Company, New York, 1950. Zbl 0283.28001, MR 0033869
Reference: [15] Jin X.: Spectral representation of one-dimensional Liouville Brownian motion and Liouville Brownian excursion.available at arXiv: 1705.01726v1 [math.PR] (2017), 23 pages.
Reference: [16] Kac I. S., Kreĭn M. G.: Criteria for the discreteness of the spectrum of a singular string.Izv. Vysš. Učebn. Zaved. Matematika 1958 (1958), no. 2 (3), 136–153. MR 0139804
Reference: [17] Kac M.: Can one hear the shape of a drum?.Amer. Math. Monthly 73 (1966), no. 4, part II, 1–23. MR 0201237, 10.1080/00029890.1966.11970915
Reference: [18] Kesseböhmer M., Niemann A., Samuel T., Weyer H.: Generalised Kreĭn–Feller operators and Liouville Brownian motion via transformations of measure spaces.available at arXiv:1909.08832v2 [math.FA], (2019), 13 pages.
Reference: [19] Kesseböhmer M., Samuel T., Weyer H.: A note on measure-geometric Laplacians.Monatsh. Math. 181 (2016), no. 3, 643–655. MR 3552804, 10.1007/s00605-016-0906-0
Reference: [20] Kesseböhmer M., Samuel T., Weyer H.: Measure-geometric Laplacians for discrete distributions.Horizons of Fractal Geometry and Complex Dimensions, Contemp. Math., 731, Amer. Math. Soc., Providence, 2019, pages 133–142. MR 3989819, 10.1090/conm/731/14676
Reference: [21] Kigami J., Lapidus M. L.: Self-similarity of volume measures for Laplacians on p.c.f. self-similar fractals.Comm. Math. Phys. 217 (2001), no. 1, 165–180. MR 1815029, 10.1007/s002200000326
Reference: [22] Kotani S., Watanabe S.: Kreĭn's spectral theory of strings and generalized diffusion processes.Functional analysis in Markov Processes, Katata/Kyoto, 1981, Lecture Notes in Math., 923, Springer, Berlin, 1982, pages 235–259. MR 0661628
Reference: [23] Lapidus M. L.: Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl–Berry conjecture.Trans. Amer. Math. Soc. 325 (1991), no. 2, 465–529. MR 0994168, 10.1090/S0002-9947-1991-0994168-5
Reference: [24] Lapidus M. L.: Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media and the Weyl–Berry conjecture.Ordinary and Partial Differential Equations, Vol. IV, Dundee, 1992, Pitman Res. Notes Math. Ser., 289, Longman Sci. Tech., Harlow, 1993, pages 126–209. MR 1234502
Reference: [25] Lapidus M. L., Pomerance C.: Fonction zêta de Riemann et conjecture de Weyl–Berry pour les tambours fractals.C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 6, 343–348 (French. English summary). MR 1046509
Reference: [26] Lapidus M. L., Pomerance C.: The Riemann zeta-function and the one-dimensional Weyl–Berry conjecture for fractal drums.Proc. London Math. Soc. (3) 66 (1993), no. 1, 41–69. MR 1189091
Reference: [27] Lapidus M. L., Pomerance C.: Counterexamples to the modified Weyl–Berry conjecture on fractal drums.Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 1, 167–178. MR 1356166, 10.1017/S0305004100074053
Reference: [28] Milnor J.: Eigenvalues of the Laplace operator on certain manifolds.Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 542. MR 0162204, 10.1073/pnas.51.4.542
Reference: [29] Reed M., Simon B.: Methods of Modern Mathematical Physics. I.Functional analysis, Academic Press, Harcourt Brace Jovanovich Publishers, New York, 1980. MR 0493421
Reference: [30] Rhodes R., Vargas V.: Spectral dimension of Liouville quantum gravity.Ann. Henri Poincaré 15 (2014), no. 12, 2281–2298. MR 3272822, 10.1007/s00023-013-0308-y
Reference: [31] Urakawa H.: Bounded domains which are isospectral but not congruent.Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 3, 441–456. MR 0690649, 10.24033/asens.1433
Reference: [32] Weyl H.: Über die Abhängigkeit der Eigenschwingungen einer Membran und deren Begrenzung.J. Reine Angew. Math. 141 (1912), 1–11 (German). MR 1580843
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-3_3.pdf 367.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo