Title:
|
On left $\varphi$-biflat Banach algebras (English) |
Author:
|
Sahami, Amir |
Author:
|
Rostami, Mehdi |
Author:
|
Pourabbas, Abdolrasoul |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
61 |
Issue:
|
3 |
Year:
|
2020 |
Pages:
|
337-344 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study the notion of left $\varphi$-biflatness for Segal algebras and semigroup algebras. We show that the Segal algebra $S(G)$ is left $\varphi$-biflat if and only if $G$ is amenable. Also we characterize left $\varphi$-biflatness of semigroup algebra $l^{1}(S)$ in terms of biflatness, when $S$ is a Clifford semigroup. (English) |
Keyword:
|
left $\varphi$-biflat |
Keyword:
|
Segal algebra |
Keyword:
|
semigroup algebra |
Keyword:
|
locally compact group |
MSC:
|
43A07 |
MSC:
|
43A20 |
MSC:
|
46M10 |
idZBL:
|
Zbl 07286008 |
idMR:
|
MR4186111 |
DOI:
|
10.14712/1213-7243.2020.027 |
. |
Date available:
|
2020-11-27T07:40:45Z |
Last updated:
|
2022-10-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148470 |
. |
Reference:
|
[1] Alaghmandan M., Nasr-Isfahani R., Nemati M.: Character amenability and contractibility of abstract Segal algebras.Bull. Aust. Math. Soc. 82 (2010), no. 2, 274–281. MR 2685151, 10.1017/S0004972710000286 |
Reference:
|
[2] Essmaili M., Rostami M., Amini M.: A characterization of biflatness of Segal algebras based on a character.Glas. Mat. Ser. III 51(71) (2016), no. 1, 45–58. MR 3516184, 10.3336/gm.51.1.04 |
Reference:
|
[3] Ghahramani F., Lau A. T. M.: Weak amenability of certain classes of Banach algebra without bounded approximate identities.Math. Proc. Cambridge Philos. Soc. 133 (2002), no. 2, 357–371. MR 1912407, 10.1017/S0305004102005960 |
Reference:
|
[4] Ghahramani F., Loy R. J., Willis G. A.: Amenability and weak amenability of second conjugate Banach algebras.Proc. Amer. Math. Soc. 124 (1996), no. 5, 1489–1497. MR 1307520, 10.1090/S0002-9939-96-03177-2 |
Reference:
|
[5] Hewitt E., Ross K. A.: Abstract Harmonic Analysis I: Structure of Topological Groups. Integration Theory, Group Representations.Die Grundlehren der mathematischen Wissenschaften, 115, Academic Press, Springer, Berlin, 1963. MR 0156915 |
Reference:
|
[6] Howie J. M.: Fundamental of Semigroup Theory.London Mathematical Society Monographs, New Series, 12, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. MR 1455373 |
Reference:
|
[7] Hu Z., Monfared M. S., Traynor T.: On character amenable Banach algebras.Studia Math. 193 (2009), no. 1, 53–78. MR 2506414, 10.4064/sm193-1-3 |
Reference:
|
[8] Javanshiri H., Nemati M.: Invariant $\varphi$-means for abstract Segal algebras related to locally compact groups.Bull. Belg. Math. Soc. Simon Stevin 25 (2018), no. 5, 687–698. MR 3901840, 10.36045/bbms/1547780429 |
Reference:
|
[9] Kaniuth E., Lau A. T., Pym J.: On $\phi$-amenability of Banach algebras.Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 1, 85–96. MR 2388235, 10.1017/S0305004107000874 |
Reference:
|
[10] Ramsden P.: Biflatness of semigroup algebras.Semigroup Forum 79 (2009), no. 3, 515–530. MR 2564061, 10.1007/s00233-009-9169-6 |
Reference:
|
[11] Reiter H.: $L^{1}$-algebras and Segal Algebras.Lecture Notes in Mathematics, 231, Springer, Berlin, 1971. MR 0440280 |
Reference:
|
[12] Runde V.: Lectures on Amenability.Lecture Notes in Mathematics, 1774, Springer, Berlin, 2002. MR 1874893 |
. |