Previous |  Up |  Next

Article

Title: On left $\varphi$-biflat Banach algebras (English)
Author: Sahami, Amir
Author: Rostami, Mehdi
Author: Pourabbas, Abdolrasoul
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 3
Year: 2020
Pages: 337-344
Summary lang: English
.
Category: math
.
Summary: We study the notion of left $\varphi$-biflatness for Segal algebras and semigroup algebras. We show that the Segal algebra $S(G)$ is left $\varphi$-biflat if and only if $G$ is amenable. Also we characterize left $\varphi$-biflatness of semigroup algebra $l^{1}(S)$ in terms of biflatness, when $S$ is a Clifford semigroup. (English)
Keyword: left $\varphi$-biflat
Keyword: Segal algebra
Keyword: semigroup algebra
Keyword: locally compact group
MSC: 43A07
MSC: 43A20
MSC: 46M10
idZBL: Zbl 07286008
idMR: MR4186111
DOI: 10.14712/1213-7243.2020.027
.
Date available: 2020-11-27T07:40:45Z
Last updated: 2022-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148470
.
Reference: [1] Alaghmandan M., Nasr-Isfahani R., Nemati M.: Character amenability and contractibility of abstract Segal algebras.Bull. Aust. Math. Soc. 82 (2010), no. 2, 274–281. MR 2685151, 10.1017/S0004972710000286
Reference: [2] Essmaili M., Rostami M., Amini M.: A characterization of biflatness of Segal algebras based on a character.Glas. Mat. Ser. III 51(71) (2016), no. 1, 45–58. MR 3516184, 10.3336/gm.51.1.04
Reference: [3] Ghahramani F., Lau A. T. M.: Weak amenability of certain classes of Banach algebra without bounded approximate identities.Math. Proc. Cambridge Philos. Soc. 133 (2002), no. 2, 357–371. MR 1912407, 10.1017/S0305004102005960
Reference: [4] Ghahramani F., Loy R. J., Willis G. A.: Amenability and weak amenability of second conjugate Banach algebras.Proc. Amer. Math. Soc. 124 (1996), no. 5, 1489–1497. MR 1307520, 10.1090/S0002-9939-96-03177-2
Reference: [5] Hewitt E., Ross K. A.: Abstract Harmonic Analysis I: Structure of Topological Groups. Integration Theory, Group Representations.Die Grundlehren der mathematischen Wissenschaften, 115, Academic Press, Springer, Berlin, 1963. MR 0156915
Reference: [6] Howie J. M.: Fundamental of Semigroup Theory.London Mathematical Society Monographs, New Series, 12, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. MR 1455373
Reference: [7] Hu Z., Monfared M. S., Traynor T.: On character amenable Banach algebras.Studia Math. 193 (2009), no. 1, 53–78. MR 2506414, 10.4064/sm193-1-3
Reference: [8] Javanshiri H., Nemati M.: Invariant $\varphi$-means for abstract Segal algebras related to locally compact groups.Bull. Belg. Math. Soc. Simon Stevin 25 (2018), no. 5, 687–698. MR 3901840, 10.36045/bbms/1547780429
Reference: [9] Kaniuth E., Lau A. T., Pym J.: On $\phi$-amenability of Banach algebras.Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 1, 85–96. MR 2388235, 10.1017/S0305004107000874
Reference: [10] Ramsden P.: Biflatness of semigroup algebras.Semigroup Forum 79 (2009), no. 3, 515–530. MR 2564061, 10.1007/s00233-009-9169-6
Reference: [11] Reiter H.: $L^{1}$-algebras and Segal Algebras.Lecture Notes in Mathematics, 231, Springer, Berlin, 1971. MR 0440280
Reference: [12] Runde V.: Lectures on Amenability.Lecture Notes in Mathematics, 1774, Springer, Berlin, 2002. MR 1874893
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-3_4.pdf 257.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo