Previous |  Up |  Next

Article

Title: Contribution of František Matúš to the research on conditional independence (English)
Author: Studený, Milan
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 5
Year: 2020
Pages: 850-874
Summary lang: English
.
Category: math
.
Summary: An overview is given of results achieved by F. Matúš on probabilistic conditional independence (CI). First, his axiomatic characterizations of stochastic functional dependence and unconditional independence are recalled. Then his elegant proof of discrete probabilistic representability of a matroid based on its linear representability over a finite field is recalled. It is explained that this result was a basis of his methodology for constructing a probabilistic representation of a given abstract CI structure. His embedding of matroids into (augmented) abstract CI structures is recalled and his contribution to the theory of semigraphoids is mentioned as well. Finally, his results on the characterization of probabilistic CI structures induced by four discrete random variables and by four regular Gaussian random variables are recalled. Partial probabilistic representability by binary random variables is also mentioned. (English)
Keyword: conditional independence
Keyword: matroid
Keyword: polymatroid
Keyword: entropy function
Keyword: semigraphoid
Keyword: semimatroid
MSC: 05B35
MSC: 62H05
MSC: 68T30
idMR: MR4187776
DOI: 10.14736/kyb-2020-5-0850
.
Date available: 2020-12-16T15:56:32Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148487
.
Reference: [1] Birkhoff, G.: Lattice Theory. Third edition..American Mathematical Society, Colloquium Publications 25, Providence 1995. MR 0598630
Reference: [2] Chvátal, V., Wu, B.: On Reichenbach's causal betweenness..Erkenntnis 76 (2012), 41-48. MR 2874714, 10.1007/s10670-011-9321-z
Reference: [3] Chvátal, V., Matúš, F., Zwólš, Y.: Patterns of conjuctive forks..A 2016 manuscript arXiv/1608.03949.
Reference: [4] Cox, D., Little, J., O'Shea, D.: Ideals, Varieties, and Algorithms..Springer, New York 1997. Zbl 1118.13001, MR 2290010
Reference: [5] Dawid, A. P.: Conditional independence in statistical theory..J. Royal Statist. Soc. B 41 (1979), 1, 1-31. MR 0535541, 10.1111/j.2517-6161.1979.tb01052.x
Reference: [6] Dawid, A. P.: Separoids: a mathematical framework for conditional independence and irrelevance..Ann. Math. Artif. Intell. 32 (2001), 1/4, 335-372. MR 1859870, 10.1023/a:1016734104787
Reference: [7] Fujishige, S.: Submodular Functions and Optimization. Second edition..Elsevier, Amsterdam 2005. MR 2171629
Reference: [8] Geiger, D., Paz, A., Pearl, J.: Axioms and algorithms for inferences involving probabilistic independences..Inform. Comput. 91 (1991), 1, 128-141. MR 1097266, 10.1016/0890-5401(91)90077-f
Reference: [9] Geiger, D., Pearl, J.: Logical and algorithmic properties of conditional independence and graphical models..Ann. Statist. 21 (1993), 4, 2001-2021. MR 1245778, 10.1214/aos/1176349407
Reference: [10] Ingleton, A. W.: Conditions for representability and transversality of matroids..In: Lecture Notes in Computer Science 211, Springer, 1971, pp. 62-67. MR 0337664, 10.1007/bfb0061075
Reference: [11] Lauritzen, S. L.: Graphical Models..Clarendon Press, Oxford 1996. MR 1419991
Reference: [12] Loéve, M.: Probability Theory, Foundations, Random Sequences..Van Nostrand, Toronto 1955. MR 0066573
Reference: [13] Lněnička, R., Matúš, F.: On Gaussian conditional independence structures..Kybernetika 43 (2007), 3, 327-342. MR 2362722,
Reference: [14] Malvestuto, F. M.: A unique formal system for binary decompositions of database relations, probability distributions and graphs..Inform. Sci. 59 (1992), 21-52. MR 1128204, 10.1016/0020-0255(92)90042-7
Reference: [15] Matúš, F.: Independence and Radon Projections on Compact Groups (in Slovak)..Thesis for CSc. Degree in Theoretical Computer Science, Institute of Information Theory and Automation, Czechoslovak Academy of Sciences, Prague 1988.
Reference: [16] Matúš, F.: Abstract functional dependency structures..Theor. Computer Sci. 81 (1991), 117-126. MR 1103102, 10.1016/0304-3975(91)90319-w
Reference: [17] Matúš, F.: On equivalence of Markov properties over undirected graphs..J. Appl. Probab. 29 (1992), 745-749. MR 1174448, 10.1017/s0021900200043552
Reference: [18] Matúš, F.: Ascending and descending conditional independence relations..In: Trans. 11th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, volume B, Academia, Prague 1992, pp. 189-200.
Reference: [19] Matúš, F.: Stochastic independence, algebraic independence and abstract connectedness..Theor. Computer Sci. 134 (1994), 455-471. MR 1304673, 10.1016/0304-3975(94)90248-8
Reference: [20] Matúš, F.: Probabilistic conditional independence structures and matroid theory: background..Int. J. General Systems 22 (1994), 185-196. 10.1080/03081079308935205
Reference: [21] Matúš, F.: Extreme convex set functions with many non-negative differences..Discrete Math. 135 (1994), 177-191. MR 1310880, 10.1016/0012-365x(93)e0100-i
Reference: [22] Matúš, F., Studený, M.: Conditional independences among four random variables I..Combinatorics, Probability and Computing 4 (1995), 269-278. MR 1356579, 10.1017/s0963548300001644
Reference: [23] Matúš, F.: Conditional independences among four random variables II..Combinator. Probab. Comput. 4 (1995), 407-417. MR 1377558, 10.1017/s0963548300001747
Reference: [24] Matúš, F.: Conditional independence structures examined via minors..Ann. Math. Artif. Intell. 21 (1997), 99-128. MR 1479010, 10.1023/a:1018957117081
Reference: [25] Matúš, F.: Conditional independences among four random variables III: final conclusion..Combinator. Probab. Comput. 8 (1999), 269-276. MR 1702569, 10.1017/s0963548399003740
Reference: [26] Matúš, F.: Lengths of semigraphoid inferences..Ann. Math. Artif. Intell. 35 (2002), 287-294. MR 1899955, 10.1023/a:1014525817725
Reference: [27] Matúš, F.: Towards classification of semigraphoids..Discr. Math. 277 (2004), 115-145. MR 2033729, 10.1016/s0012-365x(03)00155-9
Reference: [28] Matúš, F.: Conditional independences in Gaussian vectors and rings of polynomials..In: Proc. WCII 2002, Lecture Notes in Artificial Intelligence 3301, Springer, Berlin 2005, pp. 152-161.
Reference: [29] Matúš, F.: On conditional independence and log-convexity..Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 48 (2012), 4, 1137-1147. MR 3052406, 10.1214/11-aihp431
Reference: [30] Matúš, F.: On patterns of conditional independences and covariance signs among binary variables..Acta Math. Hungar. 154 (2018), 2, 511-524. MR 3773837, 10.1007/s10474-018-0799-6
Reference: [31] Mouchart, M., Rolin, J. M.: A note on conditional independences with statistical applications..Statistica 44 (1984), 557-584. MR 0818481,
Reference: [32] Nguyen, H. Q.: Semimodular functions and combinatorial geometries..Trans. Amer. Math. Soc. 238 (1978), 355-383. MR 0491269, 10.1090/S0002-9947-1978-0491269-9
Reference: [33] Oxley, J. G.: Matroid Theory..Oxford University Press, Oxford 1992. MR 1207587
Reference: [34] Pearl, J.: Probabilistic Reasoning in Intelligent Systems - Networks of Plausible Inference..Morgan Kaufmann, San Francisco 1988. MR 0965765
Reference: [35] Reichenbach, H.: The Direction of Time..University of California Press, Los Angeles 1956.
Reference: [36] Spohn, W.: Stochastic independence, causal independence and shieldability..J. Philosoph. Logic 9 (1980), 1, 73-99. MR 0563250, 10.1007/bf00258078
Reference: [37] Studený, M.: Conditional independence relations have no finite complete characterization..In: Trans. 11th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, volume B, Academia, Prague 1992, pp. 377-396.
Reference: [38] Studený, M.: Structural semigraphoids..Int. J. General Syst. 22 (1994), 207-217. 10.1080/03081079308935207
Reference: [39] Studený, M.: Semigraphoids and structures of probabilistic conditional independence..Ann. Math. Artif. Intell. 21 (1997), 71-98. MR 1479009, 10.1023/a:1018905100242
Reference: [40] Studený, M.: Probabilistic Conditional Independence Structures..Springer, London 2005. Zbl 1070.62001, MR 3183760
Reference: [41] Whitney, H.: On the abstract properties of linear dependence..Amer. J. Math. 57 (1935), 3, 509-533. MR 1507091, 10.2307/2371182
Reference: [42] Whittaker, J.: Graphical Models in Applied Multivariate Statistics..John Wiley and Sons, Chichester 1990. MR 1112133
Reference: [43] Yeung, R. W.: Information Theory and Network Coding..Springer, New York 2008.
Reference: [44] Zhang, Z., Yeung, R. W.: A non-Shannon-type conditional inequality of information quantities..IEEE Trans. Inform. Theory 43 (1997), 1982-1986. MR 1481054, 10.1109/18.641561
Reference: [45] Ziegler, G. M.: Lectures on Polytopes..Springer, New York 1995. Zbl 0823.52002, MR 1311028
.

Files

Files Size Format View
Kybernetika_56-2020-5_2.pdf 575.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo