Previous |  Up |  Next

Article

Title: Maximizing the Bregman divergence from a Bregman family (English)
Author: Rauh, Johannes
Author: Matúš, František
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 5
Year: 2020
Pages: 875-885
Summary lang: English
.
Category: math
.
Summary: The problem to maximize the information divergence from an exponential family is generalized to the setting of Bregman divergences and suitably defined Bregman families. (English)
Keyword: Bregman divergence
Keyword: relative entropy
Keyword: exponential family
Keyword: optimization
MSC: 52A41
MSC: 62B05
MSC: 62E15
MSC: 62E17
MSC: 94A17
idMR: MR4187777
DOI: 10.14736/kyb-2020-5-0875
.
Date available: 2020-12-16T15:57:32Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148488
.
Reference: [1] Ay, N.: An information-geometric approach to a theory of pragmatic structuring..Ann. Probab. 30 (2002), 416-436. Zbl 1010.62007, MR 1894113, 10.1214/aop/1020107773
Reference: [2] Ay, N., Knauf, A.: Maximizing multi-information..Kybernetika 42 (2006), 517-538. Zbl 1249.82011, MR 2283503
Reference: [3] Barndorff-Nielsen, O.: Information and Exponential Families in Statistical Theory..Wiley, 1978. Zbl 1288.62007, MR 0489333
Reference: [4] Csiszár, I., Matúš, F.: Closures of exponential families..Ann. Probab. 33 (2005), 582-600. Zbl 1068.60008, MR 2123202, 10.1214/009117904000000766
Reference: [5] Csiszár, I., Matúš, F.: Generalized maximum likelihood extimates for exponential families..Probab. Theory Related Fields 141 (2008), 213-246. MR 2372970, 10.1007/s00440-007-0084-z
Reference: [6] Geiger, D., Meek, C., Sturmfels, B.: On the toric algebra of graphical models..Ann. Statist. 34 (2006), 1463-1492. Zbl 1104.60007, MR 2278364, 10.1214/009053606000000263
Reference: [7] Matúš, F.: Maximization of information divergences from binary i.i.d. sequences..In: Proc. IPMU 2 (2004), 1303-1306.
Reference: [8] Matúš, F.: Optimality conditions for maximizers of the information divergence from an exponential family..Kybernetika 43 (2007), 731-746. MR 2376334
Reference: [9] Matúš, F.: Divergence from factorizable distributions and matroid representations by partitions..IEEE Trans. Inform. Theory 55 (2009), 5375-5381. MR 2597169, 10.1109/tit.2009.2032806
Reference: [10] Matúš, F., Ay, N.: On maximization of the information divergence from an exponential family..In: Proc. WUPES 2003, University of Economics, Prague 2003, pp. 199-204.
Reference: [11] Matúš, F., Csiszár, I.: Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities..Kybernetika 48 (2012), 637-689. MR 3013394
Reference: [12] Matúš, F., Rauh, J.: Maximization of the information divergence from an exponential family and criticality..In: Proc. IEEE International Symposium on Information Theory (ISIT2011), 2011. MR 2817016, 10.1109/isit.2011.6034269
Reference: [13] Montúfar, G., Rauh, J., Ay, N.: Expressive power and approximation errors of Restricted Boltzmann Machines..In: Proc. NIPS 2011.
Reference: [14] Montúfar, G., Rauh, J., Ay, N.: Maximal information divergence from statistical models defined by neural networks..In: Proc. GSI, 2013, pp. 759-766. 10.1007/978-3-642-40020-9\_85
Reference: [15] Rauh, J.: Finding the maximizers of the information divergence from an exponential family..IEEE Trans. Inform. Theory 57 (2011), 3236-3247. MR 2817016, 10.1109/tit.2011.2136230
Reference: [16] Rauh, J.: Finding the Maximizers of the Information Divergence from an Exponential Family.Ph.D. Dissertation, Universität Leipzig, 2011. MR 2817016
Reference: [17] Rockafellar, R. T.: Convex Analysis..Princeton University Press, 1970. Zbl 1011.49013, MR 0274683, 10.1017/s0013091500010142
Reference: [18] Wang, N., Rauh, J., Massam, H.: Approximating faces of marginal polytopes in discrete hierarchical models..Ann. Statist. 47 (2019), 1203-1233. MR 3911110, 10.1214/18-aos1710
.

Files

Files Size Format View
Kybernetika_56-2020-5_3.pdf 485.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo