Title:
|
One-adhesive polymatroids (English) |
Author:
|
Csirmaz, Laszlo |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
56 |
Issue:
|
5 |
Year:
|
2020 |
Pages:
|
886-902 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Adhesive polymatroids were defined by F. Matúš motivated by entropy functions. Two polymatroids are adhesive if they can be glued together along their joint part in a modular way; and are one-adhesive, if one of them has a single point outside their intersection. It is shown that two polymatroids are one-adhesive if and only if two closely related polymatroids have joint extension. Using this result, adhesive polymatroid pairs on a five-element set are characterized. (English) |
Keyword:
|
polymatroid |
Keyword:
|
amalgam |
Keyword:
|
adhesive polymatroid |
Keyword:
|
entropy function |
Keyword:
|
polyhedral cone |
MSC:
|
05B35 |
MSC:
|
52B12 |
MSC:
|
94A15 |
idMR:
|
MR4187778 |
DOI:
|
10.14736/kyb-2020-5-0886 |
. |
Date available:
|
2020-12-16T15:58:34Z |
Last updated:
|
2021-02-23 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148489 |
. |
Reference:
|
[1] Ahlswede, R., Cai, N., Li, S.-Y. R., Yeung, R. W.: Network information flow..IEEE Trans. Inform. Theory 46 (2000), 1204-1216. MR 1768542, 10.1109/18.850663 |
Reference:
|
[2] Bonin, J. E.: A note on the sticky matroid conjecture..Ann. Comb. 15 (2011), 619-624. MR 2854783, 10.1007/s00026-011-0112-7 |
Reference:
|
[3] Christof, T., Loebel, A.: Porta: Polyhedron Representation Transformation Algorithm, Version 1.4.1.. |
Reference:
|
[4] Csirmaz, L., Matúš, F.: Entropy region and convolution..IEEE Trans. Inf. Theory 62 (2016), 6007-6018. MR 3565097, 10.1109/tit.2016.2601598 |
Reference:
|
[5] Dougherty, R., Freiling, C., Zeger, K.: Linear rank inequalities on five or more variables..Available at arXiv.org, arXiv:0910.0284, 2019. |
Reference:
|
[6] Martí-Farré, J., Padró, C.: Ideal secret sharing schemes whose minimal qualified subsets have at most three participants..Des. Codes Cryptogr. 52 (2009), 1-14. MR 2496243, 10.1007/s10623-008-9264-9 |
Reference:
|
[7] Fujishige, S.: Polymatroidal dependence structure of a set of random variables..Inform. Control 39 (1978), 55-72. MR 0514262, 10.1016/s0019-9958(78)91063-x |
Reference:
|
[8] Ingleton, A. W.: Representation of matroids..In: Combinatorial mathematics and its applications (D. J. A. Welsh, ed.) Academic Press, London, New York 1971, pp. 149-169. MR 0278974 |
Reference:
|
[9] Lovász, L.: Submodular functions and convexity..In: Mathematical Programming - The State of the Art (A. Bachem, M. Grötchel and B. Korte, eds.), Springer-Verlag, Berlin 1982, pp. 234-257. MR 0717403, 10.1007/978-3-642-68874-4_10 |
Reference:
|
[10] Matúš, F.: Probabilistic conditional independence structures and matroid theory: background..Int. J. General Syst. 22 (1994), 185-196. 10.1080/03081079308935205 |
Reference:
|
[11] Matúš, F.: Adhesivity of polymatroids..Discrete Math. 307 (2007), 2464-2477. MR 2359593, 10.1016/j.disc.2006.11.013 |
Reference:
|
[12] Matúš, F.: Two constructions on limits of entropy functions..IEEE Trans. Inform. Theory 53 (2007), 320-330. MR 2292891, 10.1109/tit.2006.887090 |
Reference:
|
[13] Matúš, F.: Infinitely many information inequalities..In: Proc. IEEE ISIT 2007, Nice, pp. 41-44. |
Reference:
|
[14] Matúš, F., Studený, M.: Conditional independences among four random variables I..Combin. Probab. Comput. 4 (1995), 269-278. MR 1356579, 10.1017/s0963548300001644 |
Reference:
|
[15] Oxley, J. G.: Matroid Theory..Oxford Science Publications. The Calrendon Press, Oxford University Press, New York 1992. MR 1207587 |
Reference:
|
[16] Padró, C.: Lecture Notes in Secret Sharing..Cryptology ePrint Archive 2012/674. |
Reference:
|
[17] Seymour, P. D.: On secret sharing matroids..J. Combin. Theory, Ser B 56 (1992), 69-73. MR 1182458, 10.1016/0095-8956(92)90007-k |
Reference:
|
[18] Studeny, M., Bouckaert, R. R., Kocka, T.: Extreme Supermodular Set Functions over Five Variables..Research Report No. 1977, Institute of Information Theory and Automation, Prague 2000. |
Reference:
|
[19] Yeung, R. W.: A first course in information theory..Kluwer Academic / Plenum Publishers 2002. MR 2042182 |
Reference:
|
[20] Ziegler, G. M.: Lectures on polytopes..Graduate Texts in Mathematics 152 Springer, 1994. MR 1311028, 10.1007/978-1-4613-8431-1 |
. |