Previous |  Up |  Next

Article

Title: Automorphic loops and metabelian groups (English)
Author: Greer, Mark
Author: Raney, Lee
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 4
Year: 2020
Pages: 523-534
Summary lang: English
.
Category: math
.
Summary: Given a uniquely 2-divisible group $G$, we study a commutative loop $(G,\circ)$ which arises as a result of a construction in ``Engelsche elemente noetherscher gruppen'' (1957) by R. Baer. We investigate some general properties and applications of ``$\circ$'' and determine a necessary and sufficient condition on $G$ in order for $(G, \circ)$ to be Moufang. In ``A class of loops categorically isomorphic to Bruck loops of odd order'' (2014) by M. Greer, it is conjectured that $G$ is metabelian if and only if $(G, \circ)$ is an automorphic loop. We answer a portion of this conjecture in the affirmative: in particular, we show that if $G$ is a split metabelian group of odd order, then $(G, \circ)$ is automorphic. (English)
Keyword: metabelian groups
Keyword: automorphic loops
Keyword: Bruck loops
Keyword: Moufang loops
MSC: 20N05
idZBL: Zbl 07332726
idMR: MR4230957
DOI: 10.14712/1213-7243.2020.043
.
Date available: 2021-02-25T12:43:17Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148662
.
Reference: [1] Baer R.: Engelsche Elemente Noetherscher Gruppen.Math. Ann. 133 (1957), 256–270 (German). MR 0086815, 10.1007/BF02547953
Reference: [2] Bender H.: Über den größten $p'$-Normalteiler in $p$-auflösbaren Gruppen.Arch. Math. (Basel) 18 (1967), 15–16 (German). MR 0213439, 10.1007/BF01899467
Reference: [3] Bruck R. H.: A Survey of Binary Systems.Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft 20, Reihe: Gruppentheorie, Springer, Berlin, 1958. Zbl 0141.01401, MR 0093552
Reference: [4] HASH(0x23f7c08): GAP - Groups, Algorithms, Programming - a System for Computational Discrete Algebra.https://www.gap-system.org, 2008.
Reference: [5] Glauberman G.: On loops of odd order.J. Algebra 1 (1964), 374–396. Zbl 0155.03901, MR 0175991, 10.1016/0021-8693(64)90017-1
Reference: [6] Greer M.: A class of loops categorically isomorphic to Bruck loops of odd order.Comm. Algebra 42 (2014), no. 8, 3682–3697. MR 3196069
Reference: [7] Isaacs I. M.: Finite Group Theory.Graduate Studies in Mathematics, 92, American Mathematical Society, Providence, 2008. MR 2426855, 10.1090/gsm/092
Reference: [8] Jedlička P., Kinyon M., Vojtěchovský P.: The structure of commutative automorphic loops.Trans. Amer. Math. Soc. 363 (2011), no. 1, 365–384. Zbl 1215.20060, MR 2719686, 10.1090/S0002-9947-2010-05088-3
Reference: [9] Kinyon M. K., Nagy G. P., Vojtěchovský P.: Bol loops and Bruck loops of order $pq$.J. Algebra 473 (2017), 481–512. MR 3591160, 10.1016/j.jalgebra.2016.11.023
Reference: [10] Kinyon M. K., Vojtěchovský P.: Primary decompositions in varieties of commutative diassociative loops.Comm. Algebra 37 (2009), no. 4, 1428–1444. MR 2510992, 10.1080/00927870802278917
Reference: [11] McCune W. W.: Prover9, Mace4.https://www.cs.unm.edu/̴ mccune/prover9/ , 2009.
Reference: [12] Nagy G. P., Vojtěchovský P.: Computing with small quasigroups and loops.Quasigroups Related Systems 15 (2007), no. 1, 77–94. MR 2379126
Reference: [13] Stuhl I., Vojtěchovský P.: Enumeration of involutory latin quandles, Bruck loops and commutative automorphic loops of odd prime power order.Nonassociative Mathematics and Its Applications, Contemp. Math., 721, Amer. Math. Soc., Providence, 2019, pages 261–276. MR 3898514, 10.1090/conm/721/14510
Reference: [14] Pflugfelder H. O.: Quasigroups and Loops: Introduction.Sigma Series in Pure Mathematics, 7, Heldermann Verlag, Berlin, 1990. Zbl 0715.20043, MR 1125767
Reference: [15] Thompson J. G.: Fixed points of $p$-groups acting on $p$-groups.Math. Z. 86 (1964), 12–13. MR 0168653, 10.1007/BF01111272
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-4_9.pdf 218.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo