Previous |  Up |  Next

Article

Title: The centre of a Steiner loop and the maxi-Pasch problem (English)
Author: Kozlik, Andrew R.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 4
Year: 2020
Pages: 535-545
Summary lang: English
.
Category: math
.
Summary: A binary operation ``$\cdot$'' which satisfies the identities $x\cdot e = x$, $x \cdot x = e$, $(x \cdot y) \cdot x = y$ and $x \cdot y = y \cdot x$ is called a Steiner loop. This paper revisits the proof of the necessary and sufficient conditions for the existence of a Steiner loop of order $n$ with centre of order $m$ and discusses the connection of this problem to the question of the maximum number of Pasch configurations which can occur in a Steiner triple system (STS) of a given order. An STS which attains this maximum for a given order is said to be {\it maxi-Pasch}. We show that loop factorization preserves the maxi-Pasch property and find that the Steiner loops of all currently known maxi-Pasch Steiner triple systems have centre of maximum possible order. (English)
Keyword: Steiner loop
Keyword: centre
Keyword: nucleus
Keyword: Steiner triple system
Keyword: Pasch configuration
Keyword: quadrilateral
MSC: 05B07
MSC: 20N05
idZBL: Zbl 07332727
idMR: MR4230958
DOI: 10.14712/1213-7243.2020.035
.
Date available: 2021-02-25T12:44:43Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148663
.
Reference: [1] Bruck R. H.: A Survey of Binary Systems.Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, 20, Reihe: Gruppentheorie, Springer, Berlin, 1971. Zbl 0141.01401, MR 0093552
Reference: [2] Colbourn C. J.: The configuration polytope of $ l$-line configurations in Steiner triple systems.Math. Slovaca 59 (2009), no. 1, 77–108. MR 2471691, 10.2478/s12175-008-0111-2
Reference: [3] Colbourn C. J., Rosa A.: Triple Systems.Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Zbl 1030.05017, MR 1843379
Reference: [4] Danziger P., Mendelsohn E., Grannell M. J., Griggs T. S.: Five-line configurations in Steiner triple systems.Utilitas Math. 49 (1996), 153–159. MR 1396296
Reference: [5] Di Paola J. W.: When is a totally symmetric loop a group?.Amer. Math. Monthly 76 (1969), 249–252. MR 0240231, 10.1080/00029890.1969.12000185
Reference: [6] Donovan D.: The centre of a sloop.Combinatorial Mathematics and Combinatorial Computing, Australas. J. Combin. 1 (1990), 83–89. MR 1126969
Reference: [7] Donovan D., Rahilly A.: The central spectrum of the order of a Steiner loop.Southeast Asian Bull. Math. 16 (1992), no. 2, 115–121. MR 1205545
Reference: [8] Drápal A.: On quasigroups rich in associative triples.Discrete Math. 44 (1983), no. 3, 251–265. MR 0696286, 10.1016/0012-365X(83)90189-9
Reference: [9] Grannell M. J., Griggs T. S., Mendelsohn E.: A small basis for four‐line configurations in Steiner triple systems.J. Combin. Des. 3 (1995), no. 1, 51–59. MR 1305447, 10.1002/jcd.3180030107
Reference: [10] Grannell M. J., Griggs T. S., Whitehead C. A.: The resolution of the anti-Pasch conjecture.J. Combin. Des. 8 (2000), no. 4, 300–309. MR 1762019, 10.1002/1520-6610(2000)8:4<300::AID-JCD7>3.0.CO;2-R
Reference: [11] Grannell M. J., Lovegrove G. J.: Maximizing the number of Pasch configurations in a Steiner triple system.Bull. Inst. Combin. Appl. 69 (2013), 23–35. MR 3155869
Reference: [12] Gray B. D., Ramsay C.: On the number of Pasch configurations in a Steiner triple system.Bull. Inst. Combin. Appl. 24 (1998), 105–112. MR 1641476
Reference: [13] Kaski P., Östergård P. R. J.: The Steiner triple systems of order 19.Math. Comp. 73 (2004), no. 248, 2075–2092. MR 2059752, 10.1090/S0025-5718-04-01626-6
Reference: [14] Kirkman T. P.: On a problem in combinations.Cambridge and Dublin Math. J. 2 (1847), 191–204.
Reference: [15] Ling A. C. H., Colbourn C. J., Grannell M. J., Griggs T. S.: Construction techniques for anti-Pasch Steiner triple systems.J. London Math. Soc. (2) 61 (2000), no. 3, 641–657. MR 1765934, 10.1112/S0024610700008838
Reference: [16] McCune W.: Mace4 Reference Manual and Guide.Tech. Memo ANL/MCS-TM-264, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, 2003.
Reference: [17] Stinson D. R., Wei Y. J.: Some results on quadrilaterals in Steiner triple systems.Discrete Math. 105 (1992), no. 1–3, 207–219. MR 1180204, 10.1016/0012-365X(92)90143-4
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-4_10.pdf 212.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo