Previous |  Up |  Next

Article

Title: On finite commutative IP-loops with elementary abelian inner mapping groups of order $p^5$ (English)
Author: Niemenmaa, Markku
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 4
Year: 2020
Pages: 547-551
Summary lang: English
.
Category: math
.
Summary: We show that finite commutative inverse property loops with elementary abelian inner mapping groups of order $p^5$ are centrally nilpotent of class at most two. (English)
Keyword: loop
Keyword: elementary abelian group
Keyword: inner mapping group
MSC: 20D10
MSC: 20N05
idZBL: Zbl 07332728
idMR: MR4230959
DOI: 10.14712/1213-7243.2020.034
.
Date available: 2021-02-25T12:45:38Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148664
.
Reference: [1] Bruck R. H.: Contributions to the theory of loops.Trans. Amer. Math. Soc. 60 (1946), 245–354. Zbl 0061.02201, MR 0017288, 10.1090/S0002-9947-1946-0017288-3
Reference: [2] Csörgö P.: On connected transversals to abelian subgroups and loop theoretical consequences.Arch. Math. (Basel) 86 (2006), no. 6, 499–516. MR 2241599, 10.1007/s00013-006-1379-5
Reference: [3] Csörgö P.: Abelian inner mappings and nilpotency class greater than two.European J. Combin. 28 (2007), no. 3, 858–867. Zbl 1149.20053, MR 2300766, 10.1016/j.ejc.2005.12.002
Reference: [4] Drápal A., Vojtěchovský P.: Explicit constructions of loops with commuting inner mappings.European J. Combin. 29 (2008), no. 7, 1662–1681. MR 2431758, 10.1016/j.ejc.2007.10.001
Reference: [5] Leppälä E., Niemenmaa M.: On finite commutative loops which are centrally nilpotent.Comment. Math. Univ. Carolin. 56 (2015), no. 2, 139–143. Zbl 1339.20064, MR 3338728
Reference: [6] Niemenmaa M.: Finite loops with nilpotent inner mapping groups are centrally nilpotent.Bull. Aust. Math. Soc. 79 (2009), no. 1, 109–114. Zbl 1167.20039, MR 2486887, 10.1017/S0004972708001093
Reference: [7] Niemenmaa M.: On finite commutative IP-loops with elementary abelian inner mapping groups of order $p^4$.Comment. Math. Univ. Carolin. 51 (2010), no. 4, 559–563. MR 2858260
Reference: [8] Niemenmaa M.: On dihedral $2$-groups as inner mapping groups of finite commutative inverse property loops.Comment. Math. Univ. Carolin. 59 (2018), no. 2, 189–193. MR 3815684
Reference: [9] Niemenmaa M., Kepka T.: On multiplication groups of loops.J. Algebra 135 (1990), no. 1, 112–122. Zbl 0706.20046, MR 1076080, 10.1016/0021-8693(90)90152-E
Reference: [10] Niemenmaa M., Kepka T.: On connected transversals to abelian subgroups.Bull. Austral. Math. Soc. 49 (1994), no. 1, 121–128. Zbl 0799.20020, MR 1262682, 10.1017/S0004972700016166
Reference: [11] Niemenmaa M., Rytty M.: Connected transversals and multiplication groups of loops.Quasigroups Related Systems 15 (2007), no. 1, 95–107. Zbl 1133.20009, MR 2379127
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-4_11.pdf 162.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo