Previous |  Up |  Next

Article

Title: Reducing subspaces of Toeplitz operators on Dirichlet type spaces of the bidisk (English)
Author: Lin, Hongzhao
Author: Teng, Zhongming
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 1
Year: 2021
Pages: 1-19
Summary lang: English
.
Category: math
.
Summary: The reducing subspaces of Toeplitz operators $T_{z_1^N\bar {z}_2^M}$ on Dirichlet type spaces of the ${\mathcal {D}}_\alpha ({\mathbb {D}}^2)$ are described, which extends the results for the corresponding operators on Bergman spaces of the bidisk. (English)
Keyword: reducing subspace
Keyword: Toeplitz operator
Keyword: Dirichlet type space
Keyword: bidisk
MSC: 47B35
idZBL: 07332704
idMR: MR4226469
DOI: 10.21136/CMJ.2020.0113-19
.
Date available: 2021-03-12T16:08:42Z
Last updated: 2023-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148725
.
Reference: [1] Albaseer, M., Lu, Y., Shi, Y.: Reducing subspaces for a class of Toeplitz operators on the Bergman space of the bidisk.Bull. Korean Math. Soc. 52 (2015), 1649-1660. Zbl 1336.47030, MR 3406026, 10.4134/BKMS.2015.52.5.1649
Reference: [2] Deng, J., Lu, Y., Shi, Y.: Reducing subspaces for a class of non-analytic Toeplitz operators on the bidisk.J. Math. Anal. Appl. 445 (2017), 784-796. Zbl 1358.47018, MR 3543794, 10.1016/j.jmaa.2016.08.012
Reference: [3] Gu, C.: Reducing subspaces of non-analytic Toeplitz operators on the weighted Hardy and Dirichlet spaces of the bidisk.J. Math. Anal. Appl. 459 (2018), 980-996. Zbl 06817611, MR 3732567, 10.1016/j.jmaa.2017.11.004
Reference: [4] Guo, K., Huang, H.: On multiplication operators on the Bergman space: Similarity, unitary equivalence and reducing subspaces.J. Oper. Theory 65 (2011), 355-378. Zbl 1222.47040, MR 2785849
Reference: [5] Guo, K., Sun, S., Zheng, D., Zhong, C.: Multiplication operators on the Bergman space via the Hardy space of the bidisk.J. Reine Angew. Math. 628 (2009), 129-168. Zbl 1216.47055, MR 2503238, 10.1515/CRELLE.2009.021
Reference: [6] Jupiter, D., Redett, D.: Multipliers on Dirichlet type spaces.Acta Sci. Math. 72 (2006), 179-203. Zbl 1174.46320, MR 2249487
Reference: [7] Lin, H.: Reducing subspaces of Toeplitz operators on the Dirichlet type spaces of the bidisk.Turk. J. Math. 42 (2018), 227-242. Zbl 1424.47069, MR 3762760, 10.3906/mat-1603-134
Reference: [8] Lu, Y., Zhou, X.: Invariant subspaces and reducing subspaces of weighted Bergman space over bidisk.J. Math. Soc. Japan 62 (2010), 745-765. Zbl 1202.47008, MR 2648061, 10.2969/jmsj/06230745
Reference: [9] Shi, Y., Lu, Y.: Reducing subspaces for Toeplitz operators on the polydisk.Bull. Korean Math. Soc. 50 (2013), 687-696. Zbl 1280.47039, MR 3137713, 10.4134/BKMS.2013.50.2.687
Reference: [10] Stessin, M., Zhu, K.: Reducing subspaces of weighted shift operators.Proc. Am. Math. Soc. 130 (2002), 2631-2639. Zbl 1035.47015, MR 1900871, 10.1090/S0002-9939-02-06382-7
Reference: [11] Zhou, X., Shi, Y., Lu, Y.: Invariant subspaces and reducing subspaces of weighted Bergman space over polydisc.Sci. Sin., Math. 41 (2011), 427-438. MR 2648061, 10.1360/012010-627
Reference: [12] Zhu, K.: Reducing subspaces for a class of multiplication operators.J. Lond. Math. Soc., II. Ser. 62 (2000), 553-568. Zbl 1158.47309, MR 1783644, 10.1112/S0024610700001198
.

Files

Files Size Format View
CzechMathJ_71-2021-1_1.pdf 327.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo