Previous |  Up |  Next

Article

Title: Attractors for stochastic reaction-diffusion equation with additive homogeneous noise (English)
Author: Slavík, Jakub
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 1
Year: 2021
Pages: 21-43
Summary lang: English
.
Category: math
.
Summary: We study the asymptotic behaviour of solutions of a reaction-diffusion equation in the whole space $\mathbb{R}^d$ driven by a spatially homogeneous Wiener process with finite spectral measure. The existence of a random attractor is established for initial data in suitable weighted $L^2$-space in any dimension, which complements the result from P. W. Bates, K. Lu, and B. Wang (2013). Asymptotic compactness is obtained using elements of the method of short trajectories. (English)
Keyword: reaction-diffusion equation
Keyword: random attractor
Keyword: spatially homogeneous noise
MSC: 35B41
MSC: 35K57
MSC: 37L55
MSC: 60H15
idZBL: 07332705
idMR: MR4226470
DOI: 10.21136/CMJ.2020.0144-19
.
Date available: 2021-03-12T16:09:15Z
Last updated: 2023-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148728
.
Reference: [1] Arnold, L.: Random Dynamical Systems.Springer Monographs in Mathematics, Springer, Berlin (1998). Zbl 0906.34001, MR 1723992, 10.1007/978-3-662-12878-7
Reference: [2] Arrieta, J. M., Rodriguez-Bernal, A., Cholewa, J. W., Dlotko, T.: Linear parabolic equations in locally uniform spaces.Math. Models Methods Appl. Sci. 14 (2004), 253-293. Zbl 1058.35076, MR 2040897, 10.1142/S0218202504003234
Reference: [3] Bates, P. W., Lisei, H., Lu, K.: Attractors for stochastic lattice dynamical systems.Stoch. Dyn. 6 (2006), 1-21. Zbl 1105.60041, MR 2210679, 10.1142/S0219493706001621
Reference: [4] Bates, P. W., Lu, K., Wang, B.: Tempered random attractors for parabolic equations in weighted spaces.J. Math. Phys. 54 (2013), Article ID 081505, 26 pages. Zbl 1288.35097, MR 3135449, 10.1063/1.4817597
Reference: [5] Brzeźniak, Z.: On Sobolev and Besov spaces regularity of Brownian paths.Stochastics Stochastics Rep. 56 (1996), 1-15. Zbl 0890.60077, MR 1396751, 10.1080/17442509608834032
Reference: [6] Brzeźniak, Z.: On stochastic convolution in Banach spaces and applications.Stochastics Stochastics Rep. 61 (1997), 245-295. Zbl 0891.60056, MR 1488138, 10.1080/17442509708834122
Reference: [7] Brzeźniak, Z., Li, Y.: Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains.Trans. Am. Math. Soc. 358 (2006), 5587-5629. Zbl 1113.60062, MR 2238928, 10.1090/S0002-9947-06-03923-7
Reference: [8] Brzeźniak, Z., Peszat, S.: Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process.Stud. Math. 137 (1999), 261-299. Zbl 0944.60075, MR 1736012, 10.4064/sm-137-3-261-299
Reference: [9] Brzeźniak, Z., Neerven, J. van: Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise.J. Math. Kyoto Univ. 43 (2003), 261-303. Zbl 1056.60057, MR 2051026, 10.1215/kjm/1250283728
Reference: [10] Caraballo, T., Langa, J. A., Melnik, V. S., Valero, J.: Pullback attractors of nonautonomous and stochastic multivalued dynamical systems.Set-Valued Anal. 11 (2003), 153-201. Zbl 1018.37048, MR 1966698, 10.1023/A:1022902802385
Reference: [11] Cholewa, J. W., Dlotko, T.: Cauchy problems in weighted Lebesgue spaces.Czech. Math. J. 54 (2004), 991-1013. Zbl 1080.35033, MR 2099352, 10.1007/s10587-004-6447-z
Reference: [12] Crauel, H., Debussche, A., Flandoli, F.: Random attractors.J. Dyn. Differ. Equations 9 (1997), 307-341. Zbl 0884.58064, MR 1451294, 10.1007/BF02219225
Reference: [13] Crauel, H., Flandoli, F.: Attractors for random dynamical systems.Probab. Theory Relat. Fields 100 (1994), 365-393. Zbl 0819.58023, MR 1305587, 10.1007/BF01193705
Reference: [14] Prato, G. Da, Zabczyk, J.: Stochastic Equations in Infinite Dimensions.Encyclopedia of Mathematics and Its Applications 152, Cambridge University Press, Cambridge (2014). Zbl 1317.60077, MR 3236753, 10.1017/CBO9781107295513
Reference: [15] Dawson, D. A., Salehi, H.: Spatially homogeneous random evolutions.J. Multivariate Anal. 10 (1980), 141-180. Zbl 0439.60051, MR 575923, 10.1016/0047-259X(80)90012-3
Reference: [16] Feireisl, E.: Bounded, locally compact global attractors for semilinear damped wave equations on {$\bold R^N$}.Differ. Integral Equ. 9 (1996), 1147-1156. Zbl 0858.35084, MR 1392099
Reference: [17] Flandoli, F., Schmalfuss, B.: Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise.Stochastics Stochastics Rep. 59 (1996), 21-45. Zbl 0870.60057, MR 1427258, 10.1080/17442509608834083
Reference: [18] Gel'fand, I. M., Vilenkin, N. Y.: Generalized Functions. Vol. 4. Applications of Harmonic Analysis.Academic Press, New York (1964). Zbl 0136.11201, MR 0435834
Reference: [19] Grasselli, M., Pražák, D., Schimperna, G.: Attractors for nonlinear reaction-diffusion systems in unbounded domains via the method of short trajectories.J. Differ. Equations 249 (2010), 2287-2315. Zbl 1207.35068, MR 2718659, 10.1016/j.jde.2010.06.001
Reference: [20] Haroske, D., Triebel, H.: Entropy numbers in weighted function spaces and eigenvalue distributions of some degenerate pseudodifferential operators. I.Math. Nachr. 167 (1994), 131-156. Zbl 0829.46019, MR 1285311, 10.1002/mana.19941670107
Reference: [21] Málek, J., Pražák, D.: Large time behavior via the method of $l$-trajectories.J. Differ. Equations 181 (2002), 243-279. Zbl 1187.37113, MR 1907143, 10.1006/jdeq.2001.4087
Reference: [22] Ondreját, M.: Existence of global mild and strong solutions to stochastic hyperbolic evolution equations driven by a spatially homogeneous Wiener process.J. Evol. Equ. 4 (2004), 169-191. Zbl 1054.60068, MR 2059301, 10.1007/s00028-003-0130-y
Reference: [23] Peszat, S., Zabczyk, J.: Stochastic evolution equations with a spatially homogeneous Wiener process.Stochastic Processes Appl. 72 (1997), 187-204. Zbl 0943.60048, MR 1486552, 10.1016/S0304-4149(97)00089-6
Reference: [24] Peszat, S., Zabczyk, J.: Nonlinear stochastic wave and heat equations.Probab. Theory Relat. Fields 116 (2000), 421-443. Zbl 0959.60044, MR 1749283, 10.1007/s004400050257
Reference: [25] Tessitore, G., Zabczyk, J.: Invariant measures for stochastic heat equations.Probab. Math. Stat. 18 (1998), 271-287. Zbl 0986.60057, MR 1671596
Reference: [26] Neerven, J. M. A. M. van, Veraar, M. C., Weis, L.: Stochastic evolution equations in UMD Banach spaces.J. Funct. Anal. 255 (2008), 940-993. Zbl 1149.60039, MR 2433958, 10.1016/j.jfa.2008.03.015
Reference: [27] Wang, B.: Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems.J. Differ. Equations 253 (2012), 1544-1583. Zbl 1252.35081, MR 2927390, 10.1016/j.jde.2012.05.015
Reference: [28] Zelik, S. V.: The attractor for a nonlinear reaction-diffusion system in the unbounded domain and Kolmogorov's $\epsilon$-entropy.Math. Nachr. 232 (2001), 129-179. Zbl 0989.35032, MR 1871475, 10.1002/1522-2616(200112)232:1<129::AID-MANA129>3.3.CO;2-K
.

Files

Files Size Format View
CzechMathJ_71-2021-1_2.pdf 409.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo