Previous |  Up |  Next

Article

Title: Homogenization of a three-phase composites of double-porosity type (English)
Author: Boughammoura, Ahmed
Author: Braham, Yousra
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 1
Year: 2021
Pages: 45-73
Summary lang: English
.
Category: math
.
Summary: In this work we consider a diffusion problem in a periodic composite having three phases: matrix, fibers and interphase. The heat conductivities of the medium vary periodically with a period of size $\varepsilon ^\beta $ ($\varepsilon >0$ and $\beta >0$) in the transverse directions of the fibers. In addition, we assume that the conductivity of the interphase material and the anisotropy contrast of the material in the fibers are of the same order $\varepsilon ^2$ (the so-called double-porosity type scaling) while the matrix material has a conductivity of order $1$. By introducing a partial unfolding operator for anisotropic domains we identify the limit problem. In particular, we prove that the effect of the interphase properties on the homogenized models is captured only when the microstructural length scale is of order $\varepsilon ^\beta $ with $0<\beta \leq 1$. (English)
Keyword: homogenization
Keyword: three-phase composite
Keyword: unfolding operator
Keyword: double-porosity type
MSC: 35B27
MSC: 35B45
MSC: 35K55
MSC: 35K65
MSC: 76S05
idZBL: 07332706
idMR: MR4226471
DOI: 10.21136/CMJ.2020.0151-19
.
Date available: 2021-03-12T16:09:54Z
Last updated: 2023-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148729
.
Reference: [1] Allaire, G., Murat, F.: Homogenization of the Neumann problem with nonisolated holes.Asymptotic Anal. 7 (1993), 81-95. Zbl 0823.35014, MR 1225439, 10.3233/ASY-1993-7201
Reference: [2] Berger, H., Kurukuri, S., Kari, S., Gabbert, U., Rodriguez-Ramos, R., Bravo-Castillero, J., Guinovart-Diaz, R.: Numerical and analytical approaches for calculating the effective thermo-mechanical properties of three-phase composites.J. Thermal Stresses 30 (2007), 801-817. 10.1080/01495730701415665
Reference: [3] Boughammoura, A.: Homogenization of a degenerate parabolic problem in a highly heterogeneous medium with highly anisotropic fibers.Math. Comput. Modelling 49 (2009), 66-79. Zbl 1165.80302, MR 2480033, 10.1016/j.mcm.2008.07.034
Reference: [4] Boughammoura, A.: Homogenization of an elastic medium having three phases.Ric. Mat. 64 (2015), 65-85. Zbl 1320.35036, MR 3355900, 10.1007/s11587-014-0211-y
Reference: [5] Cioranescu, D., Damlamian, A., Griso, G.: Periodic unfolding and homogenization.C. R., Math., Acad. Sci. Paris 335 (2002), 99-104. Zbl 1001.49016, MR 1921004, 10.1016/S1631-073X(02)02429-9
Reference: [6] Cioranescu, D., Damlamian, A., Griso, G.: The periodic unfolding method in homogenization.SIAM J. Math. Anal. 40 (2008), 1585-1620. Zbl 1167.49013, MR 2466168, 10.1137/080713148
Reference: [7] Cioranescu, D., Donato, P.: An Introduction to Homogenization.Oxford Lecture Series in Mathematics and Its Applications 17. Oxford University Press, Oxford (1999). Zbl 0939.35001, MR 1765047
Reference: [8] Drzal, L. T.: Interfaces and interphases.ASM Handbook, Volume 21. Composites D. B. Miracle, S. L. Donaldson ASM International, Ohio (2001), 169-179. MR 1672866
Reference: [9] Franc\ru, J., Svansted, N. E. M.: Some remarks on two-scale convergence and periodic unfolding.Appl. Math., Praha 57 (2012), 359-375. Zbl 1265.35017, MR 2984608, 10.1007/s10492-012-0021-z
Reference: [10] Kari, S., Berger, H., Gabbert, U., Guinovart-Diaz, R., Bravo-Castillero, J., Ramos, R. Rodrigues-: Evaluation of influence of interphase material parameters on effective material properties of three phase composites.Composites Sci. Techn. 68 (2008), 684-691. 10.1016/j.compscitech.2007.09.009
Reference: [11] Mikata, Y., Taya, M.: Stress field in and around a coated short fiber in an infinite matrix subjected to uniaxial and biaxial loadings.J. Appl. Mech. 52 (1985), 19-24. 10.1115/1.3168996
Reference: [12] Pukánszky, B.: Interfaces and interphases in multicomponent materials: Past, present, future.European Polymer J. 41 (2005), 645-662. 10.1016/j.eurpolymj.2004.10.035
.

Files

Files Size Format View
CzechMathJ_71-2021-1_3.pdf 398.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo