Previous |  Up |  Next

Article

Title: Carleson measures and Toeplitz operators on small Bergman spaces on the ball (English)
Author: Le, Van An
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 1
Year: 2021
Pages: 211-229
Summary lang: English
.
Category: math
.
Summary: We study Carleson measures and Toeplitz operators on the class of so-called small weighted Bergman spaces, introduced recently by Seip. A characterization of Carleson measures is obtained which extends Seip's results from the unit disk of $\mathbb {C}$ to the unit ball of $\mathbb {C}^n$. We use this characterization to give necessary and sufficient conditions for the boundedness and compactness of Toeplitz operators. Finally, we study the Schatten $p$ classes membership of Toeplitz operators for $1<p<\infty $. (English)
Keyword: Bergman space
Keyword: Carleson measure
Keyword: Toeplitz operator
Keyword: Schatten classes
MSC: 30H20
MSC: 47B35
idZBL: 07332713
idMR: MR4226478
DOI: 10.21136/CMJ.2020.0265-19
.
Date available: 2021-03-12T16:13:25Z
Last updated: 2023-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148736
.
Reference: [1] Arroussi, H., Park, I., Pau, J.: Schatten class Toeplitz operators acting on large weighted Bergman spaces.Stud. Math. 229 (2015), 203-221. Zbl 1344.30050, MR 3454300, 10.4064/sm8345-12-2015
Reference: [2] Carleson, L.: An interpolation problem for bounded analytic functions.Am. J. Math. 80 (1958), 921-930. Zbl 0085.06504, MR 117349, 10.2307/2372840
Reference: [3] Carleson, L.: Interpolations by bounded analytic functions and the corona problem.Ann. Math. 76 (1962), 547-559. Zbl 0112.29702, MR 0141789, 10.2307/1970375
Reference: [4] Hastings, W. W.: A Carleson measure theorem for Bergman spaces.Proc. Am. Math. Soc. 52 (1975), 237-241. Zbl 0296.31009, MR 0374886, 10.1090/S0002-9939-1975-0374886-9
Reference: [5] Lin, P., Rochberg, R.: Trace ideal criteria for Toeplitz and Hankel operators on the weighted Bergman spaces with exponential type weights.Pac. J. Math. 173 (1996), 127-146. Zbl 0853.47015, MR 1387794, 10.2140/pjm.1996.173.127
Reference: [6] Luecking, D.: A technique for characterizing Carleson measures on Bergman spaces.Proc. Am. Math. Soc. 87 (1983), 656-660. Zbl 0521.32005, MR 0687635, 10.1090/S0002-9939-1983-0687635-6
Reference: [7] Luecking, D.: Trace ideal criteria for Toeplitz operators.J. Func. Anal. 73 (1987), 345-368. Zbl 0618.47018, MR 0899655, 10.1016/0022-1236(87)90072-3
Reference: [8] Pau, J., Zhao, R.: Carleson measures and Toeplitz operators for weighted Bergman spaces on the unit ball.Mich. Math. J. 64 (2015), 759-796. Zbl 1333.32007, MR 3426615, 10.1307/mmj/1447878031
Reference: [9] Peláez, J. Á., Rättyä, J.: Weighted Bergman spaces induced by rapidly increasing weights.Mem. Am. Math. Soc. 227 (2014), 124 pages. Zbl 1308.30001, MR 3155774, 10.1090/memo/1066
Reference: [10] Peláez, J. Á., Rättyä, J.: Embedding theorems for Bergman spaces via harmonic analysis.Math. Ann. 362 (2015), 205-239. Zbl 1333.46032, MR 3343875, 10.1007/s00208-014-1108-5
Reference: [11] Peláez, J. Á., Rättyä, J.: Trace class criteria for Toeplitz and composition operators on small Bergman spaces.Adv. Math. 293 (2016), 606-643. Zbl 1359.47025, MR 3474330, 10.1016/j.aim.2016.02.017
Reference: [12] Peláez, J. Á., Rättyä, J., Sierra, K.: Berezin transform and Toeplitz operators on Bergman spaces induced by regular weights.J. Geom. Anal. 28 (2018), 656-687. Zbl 06859122, MR 3745876, 10.1007/s12220-017-9837-9
Reference: [13] Seip, K.: Interpolation and sampling in small Bergman spaces.Collect. Math. 64 (2013), 61-72. Zbl 1266.30020, MR 3016633, 10.1007/s13348-011-0054-8
Reference: [14] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball.Graduate Texts in Mathematics 226, Springer, New York (2005). Zbl 1067.32005, MR 2115155, 10.1007/0-387-27539-8
Reference: [15] Zhu, K.: Operator Theory in Function Spaces.Mathematical Surveys and Monographs 138, American Mathematical Society, Providence (2007). Zbl 1123.47001, MR 2311536, 10.1090/surv/138
.

Files

Files Size Format View
CzechMathJ_71-2021-1_10.pdf 343.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo