Previous |  Up |  Next

Article

Title: Eigenvalue bounds for some classes of matrices associated with graphs (English)
Author: Mehatari, Ranjit
Author: Kannan, M. Rajesh
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 1
Year: 2021
Pages: 231-251
Summary lang: English
.
Category: math
.
Summary: For a given complex square matrix $A$ with constant row sum, we establish two new eigenvalue inclusion sets. Using these bounds, first, we derive bounds for the second largest and the smallest eigenvalues of adjacency matrices of $k$-regular graphs. Then we establish some bounds for the second largest and the smallest eigenvalues of the normalized adjacency matrices of graphs and the second smallest and the largest eigenvalues of the Laplacian matrices of graphs. The sharpness of these bounds is verified by examples. (English)
Keyword: adjacency matrix
Keyword: Laplacian matrix
Keyword: normalized adjacency matrix
Keyword: spectral radius
Keyword: algebraic connectivity
Keyword: Randić index
MSC: 05C50
idZBL: 07332714
idMR: MR4226479
DOI: 10.21136/CMJ.2020.0290-19
.
Date available: 2021-03-12T16:14:07Z
Last updated: 2023-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148737
.
Reference: [1] Banerjee, A., Mehatari, R.: An eigenvalue localization theorem for stochastic matrices and its application to Randić matrices.Linear Algebra Appl. 505 (2016), 85-96. Zbl 1338.15069, MR 3506485, 10.1016/j.laa.2016.04.023
Reference: [2] Bollobás, B., Erdös, P.: Graphs of extremal weights.Ars Comb. 50 (1998), 225-233. Zbl 0963.05068, MR 1670561
Reference: [3] Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications.American Elsevier, New York (1976). Zbl 1226.05083, MR 0411988
Reference: [4] Bozkurt, Ş. B., Güngör, A. D., Gutman, I., Çevik, A. S.: Randić matrix and Randić energy.MATCH Commun. Math. Comput. Chem. 64 (2010), 239-250. Zbl 1265.05113, MR 2677585
Reference: [5] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs.Universitext. Springer, Berlin (2012). Zbl 1231.05001, MR 2882891, 10.1007/978-1-4614-1939-6
Reference: [6] Butler, S., Chung, F.: Spectral graph theory.Handbook of Linear Algebra L. Hogben Discrete Mathematics and its Applications. CRC Press, Boca Raton (2014), Article ID 47. Zbl 1284.15001, MR 3013937
Reference: [7] Cavers, M. S.: The normalized Laplacian matrix and general Randić index of graphs: Ph.D. Thesis.University of Regina, Regina (2010). MR 3078627
Reference: [8] Chung, F. R. K.: Spectral Graph Theory.Regional Conference Series in Mathematics 92. American Mathematical Society, Providence (1997). Zbl 0867.05046, MR 1421568
Reference: [9] Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications.Pure and Applied Mathematics 87. Academic Press, New York (1980). Zbl 0458.05042, MR 0572262
Reference: [10] Das, K. C.: A sharp upper bound for the number of spanning trees of a graph.Graphs Comb. 23 (2007), 625-632. Zbl 1139.05032, MR 2365415, 10.1007/s00373-007-0758-4
Reference: [11] Fiedler, M.: Algebraic connectivity of graphs.Czech. Math. J. 23 (1973), 298-305. Zbl 0265.05119, MR 0318007, 10.21136/CMJ.1973.101168
Reference: [12] Li, J., Guo, J-M., Shiu, W. C.: Bounds on normalized Laplacian eigenvalues of graphs.J. Inequal. Appl. 316 (2014), Article ID 316, 8 pages. Zbl 1332.05090, MR 3344113, 10.1186/1029-242X-2014-316
Reference: [13] Marsli, R., Hall, F. J.: On bounding the eigenvalues of matrices with constant row-sums.Linear Multilinear Algebra 67 (2019), 672-684. Zbl 1412.15020, MR 3914323, 10.1080/03081087.2018.1430736
Reference: [14] Randić, M.: Characterization of molecular branching.J. Am. Chem. Soc. 97 (1975), 6609-6615. 10.1021/ja00856a001
Reference: [15] Rojo, O., Soto, R. L.: A new upper bound on the largest normalized Laplacian eigenvalue.Oper. Matrices 7 (2013), 323-332. Zbl 1283.05168, MR 3099188, 10.7153/oam-07-19
Reference: [16] Stanić, Z.: Inequalities for Graph Eigenvalues.London Mathematical Society Lecture Note Series 423. Cambridge University Press, Cambridge (2015). Zbl 1368.05001, MR 3469535, 10.1017/CBO9781316341308
Reference: [17] Varga, R. S.: Geršgorin and His Circles.Springer Series in Computational Mathematics 36. Springer, Berlin (2004). Zbl 1057.15023, MR 2093409, 10.1007/978-3-642-17798-9
Reference: [18] Wolkowicz, H., Styan, G. P. H.: Bounds for eigenvalues using traces.Linear Algebra Appl. 29 (1980), 471-506. Zbl 0435.15015, MR 0562777, 10.1016/0024-3795(80)90258-X
.

Files

Files Size Format View
CzechMathJ_71-2021-1_11.pdf 335.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo