Previous |  Up |  Next

Article

Title: Drinfeld doubles via derived Hall algebras and Bridgeland's Hall algebras (English)
Author: Xu, Fan
Author: Zhang, Haicheng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 1
Year: 2021
Pages: 253-267
Summary lang: English
.
Category: math
.
Summary: Let ${\cal A}$ be a finitary hereditary abelian category. We give a Hall algebra presentation of Kashaev's theorem on the relation between Drinfeld double and Heisenberg double. As applications, we obtain realizations of the Drinfeld double Hall algebra of ${\cal A}$ via its derived Hall algebra and Bridgeland's Hall algebra of $m$-cyclic complexes. (English)
Keyword: Heisenberg double
Keyword: Drinfeld double
Keyword: derived Hall algebra
Keyword: Bridgeland's Hall algebra
MSC: 16G20
MSC: 17B20
MSC: 17B37
idZBL: 07332715
idMR: MR4226480
DOI: 10.21136/CMJ.2020.0313-19
.
Date available: 2021-03-12T16:14:35Z
Last updated: 2023-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148738
.
Reference: [1] Bridgeland, T.: Quantum groups via Hall algebras of complexes.Ann. Math. (2) 177 (2013), 739-759. Zbl 1268.16017, MR 3010811, 10.4007/annals.2013.177.2.9
Reference: [2] Chen, Q., Deng, B.: Cyclic complexes, Hall polynomials and simple Lie algebras.J. Algebra 440 (2015), 1-32. Zbl 1328.16007, MR 3373385, 10.1016/j.jalgebra.2015.04.043
Reference: [3] Green, J. A.: Hall algebras, hereditary algebras and quantum groups.Invent. Math. 120 (1995), 361-377. Zbl 0836.16021, MR 1329046, 10.1007/BF01241133
Reference: [4] Kapranov, M.: Eisenstein series and quantum affine algebras.J. Math. Sci., New York 84 (1997), 1311-1360. Zbl 0929.11015, MR 1465518, 10.1007/BF02399194
Reference: [5] Kapranov, M.: Heisenberg doubles and derived categories.J. Algebra 202 (1998), 712-744. Zbl 0910.18005, MR 1617651, 10.1006/jabr.1997.7323
Reference: [6] Kashaev, R. M.: The Heisenberg double and the pentagon relation.St. Petersbg. Math. J. 8 (1997), 585-592 translation from Algebra Anal. 8 1996 63-74. Zbl 0870.16023, MR 1418255
Reference: [7] Lin, J.: Modified Ringel-Hall algebras, naive lattice algebras and lattice algebras.Sci. China, Math. 63 (2020), 671-688. Zbl 07184422, MR 4079890, 10.1007/s11425-017-9377-8
Reference: [8] Ringel, C. M.: Hall algebras.Topics in Algebra. Part 1. Rings and Representations of Algebras Banach Center Publications 26. PWN, Warsaw (1990), 433-447. Zbl 0778.16004, MR 1171248, 10.4064/-26-1-433-447
Reference: [9] Ringel, C. M.: Hall algebras and quantum groups.Invent. Math. 101 (1990), 583-591. Zbl 0735.16009, MR 1062796, 10.1007/BF01231516
Reference: [10] Schiffmann, O.: Lectures on Hall algebras.Geometric Methods in Representation Theory II Société Mathématique de France, Paris (2012), 1-141. Zbl 1309.18012, MR 3202707
Reference: [11] Sheng, J., Xu, F.: Derived Hall algebras and lattice algebras.Algebra Colloq. 19 (2012), 533-538. Zbl 1250.18013, MR 2999262, 10.1142/S1005386712000399
Reference: [12] Toën, B.: Derived Hall algebras.Duke Math. J. 135 (2006), 587-615. Zbl 1117.18011, MR 2272977, 10.1215/s0012-7094-06-13536-6
Reference: [13] Xiao, J.: Drinfeld double and Ringel-Green theory of Hall algebras.J. Algebra 190 (1997), 100-144. Zbl 0874.16026, MR 1442148, 10.1006/jabr.1996.6887
Reference: [14] Xiao, J., Xu, F.: Hall algebras associated to triangulated categories.Duke Math. J. 143 (2008), 357-373. Zbl 1168.18006, MR 2420510, 10.1215/00127094-2008-021
Reference: [15] Yanagida, S.: A note on Bridgeland's Hall algebra of two-periodic complexes.Math. Z. 282 (2016), 973-991. Zbl 1403.16011, MR 3473652, 10.1007/s00209-015-1573-x
Reference: [16] Zhang, H.: A note on Bridgeland Hall algebras.Commun. Algebra 46 (2018), 2551-2560. Zbl 06900764, MR 3778411, 10.1080/00927872.2017.1388812
Reference: [17] Zhang, H.: Bridgeland's Hall algebras and Heisenberg doubles.J. Algebra Appl. 17 (2018), Article ID 1850104, 12 pages. Zbl 1391.16016, MR 3805715, 10.1142/S0219498818501049
.

Files

Files Size Format View
CzechMathJ_71-2021-1_12.pdf 337.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo