Previous |  Up |  Next

Article

Title: Unbalanced unicyclic and bicyclic graphs with extremal spectral radius (English)
Author: Belardo, Francesco
Author: Brunetti, Maurizio
Author: Ciampella, Adriana
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 2
Year: 2021
Pages: 417-433
Summary lang: English
.
Category: math
.
Summary: A signed graph $\Gamma $ is a graph whose edges are labeled by signs. If $\Gamma $ has $n$ vertices, its spectral radius is the number $\rho (\Gamma ) := \max \{ | \lambda _i(\Gamma ) | \colon 1 \leq i \leq n \}$, where $\lambda _1(\Gamma ) \geq \cdots \geq \lambda _n(\Gamma )$ are the eigenvalues of the signed adjacency matrix $A(\Gamma )$. Here we determine the signed graphs achieving the minimal or the maximal spectral radius in the classes $\frak U_n$ and $\frak B_n$ of unbalanced unicyclic graphs and unbalanced bicyclic graphs, respectively. (English)
Keyword: signed graph
Keyword: spectral radius
Keyword: bicyclic graph
MSC: 05C22
MSC: 05C50
idZBL: 07361077
idMR: MR4263178
DOI: 10.21136/CMJ.2020.0403-19
.
Date available: 2021-05-20T13:42:38Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148913
.
Reference: [1] Akbari, S., Belardo, F., Dodongeh, E., Nematollahi, M. A.: Spectral characterizations of signed cycles.Linear Algebra Appl. 553 (2018), 307-327. Zbl 1391.05126, MR 3809382, 10.1016/j.laa.2018.05.012
Reference: [2] Akbari, S., Belardo, F., Heydari, F., Maghasedi, M., Souri, M.: On the largest eigenvalue of signed unicyclic graphs.Linear Algebra Appl. 581 (2019), 145-162. Zbl 1420.05070, MR 3982012, 10.1016/j.laa.2019.06.016
Reference: [3] Akbari, S., Haemers, W. H., Maimani, H. R., Majd, L. Parsaei: Signed graphs cospectral with the path.Linear Algebra Appl. 553 (2018), 104-116. Zbl 1391.05156, MR 3809370, 10.1016/j.laa.2018.04.021
Reference: [4] Belardo, F., Brunetti, M.: Connected signed graphs $L$-cospectral to signed $\infty$-graphs.Linear Multilinear Algebra 67 (2019), 2410-2426. Zbl 1425.05067, MR 4017722, 10.1080/03081087.2018.1494122
Reference: [5] Belardo, F., Brunetti, M., Ciampella, A.: Signed bicyclic graphs minimizing the least Laplacian eigenvalue.Linear Algebra Appl. 557 (2018), 201-233. Zbl 1396.05066, MR 3848268, 10.1016/j.laa.2018.07.026
Reference: [6] Belardo, F., Cioabă, S., Koolen, J., Wang, J.: Open problems in the spectral theory of signed graphs.Art Discrete Appl. Math. 1 (2018), Article ID P2.10, 23 pages. Zbl 1421.05052, MR 3997096, 10.26493/2590-9770.1286.d7b
Reference: [7] Belardo, F., Marzi, E. M. Li, Simić, S. K.: Some results on the index of unicyclic graphs.Linear Algebra Appl. 416 (2006), 1048-1059. Zbl 1092.05043, MR 2242480, 10.1016/j.laa.2006.01.008
Reference: [8] Brualdi, R. A., Solheid, E. S.: On the spectral radius of connected graphs.Publ. Inst. Math., Nouv. Sér. 39 (1986), 45-54. Zbl 0603.05028, MR 0869175
Reference: [9] Brunetti, M.: On the existence of non-golden signed graphs.Atti Accad. Peloritana Pericolanti, Cl. Sci. Fis. Mat. Nat. 96 (2018), Article A2, 10 pages. MR 3900933, 10.1478/AAPP.96S2A2
Reference: [10] Chang, A., Tian, F., Yu, A.: On the index of bicyclic graphs with perfect matchings.Discrete Math. 283 (2004), 51-59. Zbl 1064.05118, MR 2060353, 10.1016/j.disc.2004.02.005
Reference: [11] Cvetković, D., Rowlinson, P.: Spectra of unicyclic graphs.Graphs Comb. 3 (1987), 7-23. Zbl 0623.05038, MR 0932109, 10.1007/BF01788525
Reference: [12] Cvetković, D., Rowlinson, P., Simić, S.: Eigenspaces of Graphs.Encyclopedia of Mathematics and Its Applications 66. Cambridge University Press, Cambridge (1997). Zbl 0878.05057, MR 1440854, 10.1017/CBO9781139086547
Reference: [13] Guo, S.-G.: The spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices.Linear Algebra Appl. 408 (2005), 78-85. Zbl 1073.05550, MR 2166856, 10.1016/j.laa.2005.05.022
Reference: [14] Guo, S.-G.: On the spectral radius of bicyclic graphs with $n$ vertices and diameter $d$.Linear Algebra Appl. 422 (2007), 119-132. Zbl 1112.05064, MR 2298999, 10.1016/j.laa.2006.09.011
Reference: [15] McKee, J., Smyth, C.: Integer symmetric matrices having all their eigenvalues in the interval $[-2, 2]$.J. Algebra 317 (2007), 260-290. Zbl 1140.15007, MR 2360149, 10.1016/j.jalgebra.2007.05.019
Reference: [16] Simić, S. K.: On the largest eigenvalue of unicyclic graphs.Publ. Inst. Math., Nouv. Sér. 42 (1987), 13-19. Zbl 0641.05040, MR 0937447
Reference: [17] Simić, S. K.: On the largest eigenvalue of bicyclic graphs.Publ. Inst. Math., Nouv. Sér. 46 (1989), 1-6. Zbl 0747.05058, MR 1060049
Reference: [18] Stanić, Z.: Bounding the largest eigenvalue of signed graphs.Linear Algebra Appl. 573 (2019), 80-89. Zbl 1411.05109, MR 3933292, 10.1016/j.laa.2019.03.011
Reference: [19] Stevanović, D.: Spectral Radius of Graphs.Elsevier Academic Press, Amsterdam (2015). Zbl 1309.05001, 10.1016/c2014-0-02233-2
Reference: [20] Yu, A., Tian, F.: On the spectral radius of bicyclic graphs.MATCH Commun. Math. Comput. Chem. 52 (2004), 91-101. Zbl 1080.05522, MR 2104641
Reference: [21] Zaslavsky, T.: Biased graphs. I: Bias, balance, and gains.J. Comb. Theory, Ser. B 47 (1989), 32-52. Zbl 0714.05057, MR 1007712, 10.1016/0095-8956(89)90063-4
Reference: [22] Zaslavsky, T.: Matrices in the theory of signed simple graphs.Advances in Discrete Mathematics and Applications Ramanujan Mathematical Society Lecture Notes Series 13. Ramanujan Mathematical Society, Mysore (2010), 207-229. Zbl 1231.05120, MR 2766941
Reference: [23] Zaslavsky, T.: A mathematical bibliography of signed and gain graphs and allied areas.Electron. J. Comb., Dynamic Surveys 5 (1998), Article ID DS8, 127 pages. Zbl 0898.05001, MR 1744869, 10.37236/29
Reference: [24] Zaslavsky, T.: Glossary of signed and gain graphs and allied areas.Electron. J. Comb., Dynamic Survey 5 (1998), Article ID DS9, 41 pages. Zbl 0898.05002, MR 1744870, 10.37236/31
.

Files

Files Size Format View
CzechMathJ_71-2021-2_8.pdf 367.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo