Previous |  Up |  Next

Article

Title: Gorenstein dimension of abelian categories arising from cluster tilting subcategories (English)
Author: Liu, Yu
Author: Zhou, Panyue
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 2
Year: 2021
Pages: 435-453
Summary lang: English
.
Category: math
.
Summary: Let $\mathscr {C}$ be a triangulated category and $\mathscr {X}$ be a cluster tilting subcategory of $\mathscr {C}$. Koenig and Zhu showed that the quotient category $\mathscr {C}/\mathscr {X}$ is Gorenstein of Gorenstein dimension at most one. But this is not always true when $\mathscr {C}$ becomes an exact category. The notion of an extriangulated category was introduced by Nakaoka and Palu as a simultaneous generalization of exact categories and triangulated categories. Now let $\mathscr {C}$ be an extriangulated category with enough projectives and enough injectives, and $\mathscr {X}$ a cluster tilting subcategory of $\mathscr {C}$. We show that under certain conditions, the quotient category $\mathscr {C}/\mathscr {X}$ is Gorenstein of Gorenstein dimension at most one. As an application, this result generalizes the work by Koenig and Zhu. (English)
Keyword: extriangulated category
Keyword: abelian category
Keyword: cluster tilting subcategory
Keyword: Gorenstein dimension
MSC: 18E10
MSC: 18G80
idZBL: 07361078
idMR: MR4263179
DOI: 10.21136/CMJ.2021.0417-19
.
Date available: 2021-05-20T13:43:11Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148914
.
Reference: [1] Demonet, L., Liu, Y.: Quotients of exact categories by cluster tilting subcategories as module categories.J. Pure Appl. Algebra 217 (2013), 2282-2297. Zbl 1408.18021, MR 3057311, 10.1016/j.jpaa.2013.03.007
Reference: [2] Koenig, S., Zhu, B.: From triangulated categories to abelian categories: Cluster tilting in a general framework.Math. Z. 258 (2008), 143-160. Zbl 1133.18005, MR 2350040, 10.1007/s00209-007-0165-9
Reference: [3] Liu, Y.: Abelian quotients associated with fully rigid subcategories.Available at https://arxiv.org/abs/1902.07421 (2019), 14 pages.
Reference: [4] Liu, Y., Nakaoka, H.: Hearts of twin cotorsion pairs on extriangulated categories.J. Algebra 528 (2019), 96-149. Zbl 1419.18018, MR 3928292, 10.1016/j.jalgebra.2019.03.005
Reference: [5] Nakaoka, H., Palu, Y.: Extriangulated categories, Hovey twin cotorsion pairs and model structures.Cah. Topol. Géom. Différ. Catég. 60 (2019), 117-193. Zbl 07088229, MR 3931945
Reference: [6] Zhou, P., Zhu, B.: Triangulated quotient categories revisited.J. Algebra 502 (2018), 196-232. Zbl 1388.18014, MR 3774890, 10.1016/j.jalgebra.2018.01.031
Reference: [7] Zhou, P., Zhu, B.: Cluster-tilting subcategories in extriangulated categories.Theory Appl. Categ. 34 (2019), 221-242. Zbl 1408.18029, MR 3935450
.

Files

Files Size Format View
CzechMathJ_71-2021-2_9.pdf 303.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo