Previous |  Up |  Next

Article

Title: Sidon basis in polynomial rings over finite fields (English)
Author: Kuo, Wentang
Author: Yamagishi, Shuntaro
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 2
Year: 2021
Pages: 555-562
Summary lang: English
.
Category: math
.
Summary: Let $\mathbb {F}_q[t]$ denote the polynomial ring over $\mathbb {F}_q$, the finite field of $q$ elements. Suppose the characteristic of $\mathbb {F}_q$ is not $2$ or $3$. We prove that there exist infinitely many $N \in \mathbb {N}$ such that the set $\{ f \in \mathbb {F}_q[t] \colon \deg f < N \}$ contains a Sidon set which is an additive basis of order $3$. (English)
Keyword: Sidon set
Keyword: additive basis
Keyword: polynomial rings over finite fields
MSC: 11B83
MSC: 11K31
MSC: 11T55
idZBL: 07361085
idMR: MR4263186
DOI: 10.21136/CMJ.2020.0543-19
.
Date available: 2021-05-20T13:47:33Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148921
.
Reference: [1] Cilleruelo, J.: Combinatorial problems in finite fields and Sidon sets.Combinatorica 32 (2012), 497-511. Zbl 1291.11025, MR 3004806, 10.1007/s00493-012-2819-4
Reference: [2] Cilleruelo, J.: On Sidon sets and asymptotic bases.Proc. Lond. Math. Soc. (3) 111 (2015), 1206-1230. Zbl 1390.11026, MR 3477233, 10.1112/plms/pdv050
Reference: [3] Deshouillers, J.-M., Plagne, A.: A Sidon basis.Acta Math. Hung. 123 (2009), 233-238. Zbl 1200.11008, MR 2500912, 10.1007/s10474-008-8097-3
Reference: [4] Erdős, P., Sárközy, A., Sós, V. T.: On additive properties of general sequences.Discrete Math. 136 (1994), 75-99. Zbl 0818.11009, MR 1313282, 10.1016/0012-365X(94)00108-U
Reference: [5] Erdős, P., Sárközy, A., Sós, V. T.: On sum sets of Sidon sets I.J. Number Theory 47 (1994), 329-347. Zbl 0811.11014, MR 1278402, 10.1006/jnth.1994.1040
Reference: [6] Erdős, P., Turán, P.: On a problem of Sidon in additive number theory, and on some related problems.J. Lond. Math. Soc. 16 (1941), 212-215. Zbl 0061.07301, MR 0006197, 10.1112/jlms/s1-16.4.212
Reference: [7] Kiss, S. Z.: On Sidon sets which are asymptotic basis.Acta Math. Hung. 128 (2010), 46-58. Zbl 1218.11012, MR 2665798, 10.1007/s10474-010-9155-1
Reference: [8] Kiss, S. Z., Rozgonyi, E., Sándor, C.: On Sidon sets which are asymptotic bases of order 4.Funct. Approximatio, Comment. Math. 51 (2014), 393-413. Zbl 1353.11016, MR 3282635, 10.7169/facm/2014.51.2.10
Reference: [9] Konyagin, S. V., Lev, V. F.: The Erdős-Turán problem in infinite groups.Additive Number Theory Springer, New York (2010), 195-202. Zbl 1271.11011, MR 2744757, 10.1007/978-0-387-68361-4_14
Reference: [10] Lang, S., Weil, A.: Number of points of varieties in finite fields.Am. J. Math. 76 (1954), 819-827. Zbl 0058.27202, MR 0065218, 10.2307/2372655
Reference: [11] O'Bryant, K.: A complete annotated bibliography of work related to Sidon sequences.Electron. J. Comb. DS11 (2004), 39 pages. Zbl 1142.11312
.

Files

Files Size Format View
CzechMathJ_71-2021-2_16.pdf 211.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo