Previous |  Up |  Next

Article

Title: Entropy in Thermodynamics: from Foliation to Categorization (English)
Author: Kycia, Radosław A.
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 29
Issue: 1
Year: 2021
Pages: 49-66
Summary lang: English
.
Category: math
.
Summary: We overview the notion of entropy in thermodynamics. We start from the smooth case using differential forms on the manifold, which is the natural language for thermodynamics. Then the axiomatic definition of entropy as ordering on a set that is induced by adiabatic processes will be outlined. Finally, the viewpoint of category theory is provided, which reinterprets the ordering structure as a category of pre-ordered sets. (English)
Keyword: Entropy; Thermodynamics; Contact structure; Ordering; Posets; Galois connection
MSC: 80-10
MSC: 80A05
idZBL: Zbl 07413357
idMR: MR4251305
.
Date available: 2021-07-09T12:26:34Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148991
.
Reference: [1] Babson, E., Kozlov, D.N.: Group actions on posets.Journal of Algebra, 285, 2, 2005, 439-450, Elsevier, MR 2125446, 10.1016/j.jalgebra.2001.07.002
Reference: [2] Bamberg, P., Sternberg, S.: A Course in Mathematics for Students of Physics: Volume 2.1990, Cambridge University Press, MR 1135106
Reference: [3] Boyling, J.B.: An axiomatic approach to classical thermodynamics.Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 329, 1576, 1972, 35-70, The Royal Society London, MR 0363176
Reference: [4] Callen, H.B.: Thermodynamics.1966, John Wiley & Sons Inc.,
Reference: [5] Dieck, T.T.: Transformation Groups and Representation Theory.1979, Springer, Lecture Notes in Mathematics 766, MR 0551743
Reference: [6] Edelen, D.G.B.: Applied exterior calculus.2011, Dover, MR 2114747
Reference: [7] Frankel, T.: The geometry of physics: An introduction.2011, Cambridge University Press, MR 2884939
Reference: [8] Ingarden, R., Jamiołkowski, A., Mrugała, R.: Fizyka statystyczna.1990, PWN,
Reference: [9] Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems.54, 1996, Cambridge University Press, MR 1326374
Reference: [10] Kolář, I., Michor, P.W., Slovák, J.: Natural operations in differential geometry.1993, Springer-Verlag Berlin Heidelberg, Zbl 0782.53013, MR 1202431
Reference: [11] Kushner, A., Lychagin, V., Rubtsov, V.: Contact geometry and nonlinear differential equations.101, 2007, Cambridge University Press, MR 2352610
Reference: [12] Kushner, A., Lychagin, V., Slovák, J.: Lectures on Geometry of Monge-Ampère Equations with Maple.Nonlinear PDEs, Their Geometry, and Applications, 2019, 53-94, Birkhäuser, MR 3932298
Reference: [13] Kycia, R.A.: Landauer's principle as a special case of Galois connection.Entropy, 20, 12, 2018, 971, Multidisciplinary Digital Publishing Institute, MR 3909349
Reference: [14] Ladyman, J., Presnell, S., Short, A.J., Groisman, B.: The connection between logical and thermodynamic irreversibility.Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics, 38, 1, 2007, 58-79, Elsevier, MR 2340649, 10.1016/j.shpsb.2006.03.007
Reference: [15] Landauer, R.: Irreversibility and heat generation in the computing process.IBM Journal of Research and Development, 5, 3, 1961, 183-191, IBM, MR 0134833, 10.1147/rd.53.0183
Reference: [16] Lieb, E.H., Yngvason, J.: A guide to entropy and the second law of thermodynamics.Statistical Mechanics, 1998, 353-363, Springer, MR 1616141
Reference: [17] Lieb, E.H., Yngvason, J.: The physics and mathematics of the second law of thermodynamics.Physics Reports, 310, 1, 1999, 1-96, Elsevier, MR 1672238, 10.1016/S0370-1573(98)00082-9
Reference: [18] Lychagin, V.V.: Contact Geometry, Measurement, and Thermodynamics.Nonlinear PDEs, Their Geometry, and Applications, 2019, 3-52, Birkhäuser, MR 3932297
Reference: [19] Lychagin, V.V.: Contact geometry and non-linear second-order differential equations.Uspechi Mat. Nauk, 34, 1, 1979, 137-165, MR 0525652
Reference: [20] Lane, S. Mac: Categories for the working mathematician.1978, Springer, MR 1712872
Reference: [21] Ore, O.: Galois connexions.Transactions of the American Mathematical Society, 55, 3, 1944, 493-513, JSTOR, Zbl 0060.06204, MR 0010555, 10.1090/S0002-9947-1944-0010555-7
Reference: [22] Reza, F.M.: An introduction to information theory.1994, Dover Publications, MR 1298628
Reference: [23] Smith, P.: Category theory: A gentle introduction.2018, University of Cambridge. MR 0812466
Reference: [24] Li, W., Zhao, Y., Wang, Q., Zhou, J.: Twenty years of entropy research: A bibliometric overview.Entropy, 21, 7, 2019, 694, Multidisciplinary Digital Publishing Institute,
.

Files

Files Size Format View
ActaOstrav_29-2021-1_4.pdf 368.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo