Previous |  Up |  Next

Article

Title: Crystallographic actions on Lie groups and post-Lie algebra structures (English)
Author: Burde, Dietrich
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 29
Issue: 1
Year: 2021
Pages: 67-89
Summary lang: English
.
Category: math
.
Summary: This survey on crystallographic groups, geometric structures on Lie groups and associated algebraic structures is based on a lecture given in the Ostrava research seminar in $2017$. (English)
Keyword: Crystallographic groups
Keyword: Pre-Lie algebras
Keyword: Post-Lie algebras
MSC: 17D99
MSC: 20H15
MSC: 22E40
idZBL: Zbl 07413358
idMR: MR4251306
.
Date available: 2021-07-09T12:30:54Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148992
.
Reference: [1] Abels, H., Margulis, G. A., Soifer, G. A.: Properly discontinuous groups of affine transformations with orthogonal linear part.C. R. Acad. Sci. Paris, 324, 253-258, MR 1438395, 10.1016/S0764-4442(99)80356-5
Reference: [2] Abels, H., Margulis, G. A., Soifer, G. A.: The Auslander conjecture for groups leaving a form of signature $(n-2,2)$ invariant.Israel J. Math., 148, 2005, 11-21, MR 2191222, 10.1007/BF02775430
Reference: [3] Auslander, L.: The structure of complete locally affine manifolds.Topology, 3, 1964, 131-139, MR 0161255, 10.1016/0040-9383(64)90012-6
Reference: [4] Auslander, L.: An Account of the Theory of Crystallographic Groups.Proceedings of the American Mathematical Society, 16, 6, 1965, 1230-1236, MR 0185012, 10.1090/S0002-9939-1965-0185012-7
Reference: [5] Auslander, L.: Simply transitive groups of affine motions.Amer. J. Math., 99, 4, 1977, 809-826, MR 0447470, 10.2307/2373867
Reference: [6] Baues, O.: Left-symmetric Algebras for gl(n).Trans. Amer. Math. Soc., 351, 7, 1999, 2979-2996, MR 1608273, 10.1090/S0002-9947-99-02315-6
Reference: [7] Benkart, G., Kostrikin, A., Kuznetsov, M.: Finite-dimensional simple Lie algebras with a nonsingular derivation.J. Algebra, 171, 3, 1995, 894-916, MR 1315926, 10.1006/jabr.1995.1041
Reference: [8] Benzécri, J. P.: Variétés localement affines.Thèse, Princeton Univ. , Princeton, N. J., 1955, MR 2612352
Reference: [9] Bieberbach, L.: Über die Bewegungsgruppen der Euklidischen Räume (German).Math. Ann., 70, 3, 1911, 297-336, MR 1511623, 10.1007/BF01564500
Reference: [10] Bieberbach, L.: Über die Bewegungsgruppen der Euklidischen Räume. Die Gruppen mit einem endlichen Fundamentalbereich (German).Math. Ann., 72, 3, 1912, 400-412, MR 1511704, 10.1007/BF01456724
Reference: [11] Benoist, Y.: Une nilvariété non affine.J. Diff. Geom., 41, 1995, 21-52, MR 1316552
Reference: [12] Brown, H., Bülow, R., Neubüser, J., Wondratschek, H., Zassenhaus, H.: Crystallographic groups of four-dimensional space.1978, Wiley Monographs in Crystallography, Wiley-Interscience, New York-Chichester-Brisbane, MR 0484179
Reference: [13] Burde, D.: Left-symmetric structures on simple modular Lie algebras.Journal of Algebra, 169, 1, 1994, 112-138, MR 1296585, 10.1006/jabr.1994.1275
Reference: [14] Burde, D., Grunewald, F.: Modules for certain Lie algebras of maximal class.Journal of Pure and Applied Algebra, 99, 3, 1995, 239-254, MR 1332900, 10.1016/0022-4049(94)00002-Z
Reference: [15] Burde, D.: Left-invariant affine structures on reductive Lie groups.Journal of Algebra, 181, 3, 1996, 884-902, MR 1386584, 10.1006/jabr.1996.0151
Reference: [16] Burde, D.: Affine structures on nilmanifolds.International Journal of Mathematics, 7, 5, 1996, 599-616, MR 1411303, 10.1142/S0129167X96000323
Reference: [17] Burde, D.: A refinement of Ado's Theorem.Archiv der Mathematik, 70, 2, 1998, 118-127, MR 1491457, 10.1007/s000130050173
Reference: [18] Burde, D., Dekimpe, K., Deschamps, S.: The Auslander conjecture for NIL-affine crystallographic groups.Mathematische Annalen, 332, 1, 2005, 161-176, MR 2139256, 10.1007/s00208-004-0623-1
Reference: [19] Burde, D.: Left-symmetric algebras, or pre-Lie algebras in geometry and physics.Central European Journal of Mathematics, 4, 3, 2006, 323-357, MR 2233854, 10.2478/s11533-006-0014-9
Reference: [20] Burde, D., Deschamps, K. Dekimpe and S.: LR-algebras.Contemporary Mathematics, 491, 2009, 125-140, MR 2537054, 10.1090/conm/491/09612
Reference: [21] Burde, D., Eick, B., Graaf, W. A. de: Computing faithful representations for nilpotent Lie algebras.Journal of Algebra, 22, 3, 2009, 602-612, MR 2531213, 10.1016/j.jalgebra.2009.04.041
Reference: [22] Burde, D., Dekimpe, K., Vercammen, K.: Complete LR-structures on solvable Lie algebras.Journal of Group Theory, 13, 5, 2010, 703-719, MR 2720199, 10.1515/jgt.2010.018
Reference: [23] Burde, D., Moens, W. A.: Faithful Lie algebra modules and quotients of the universal enveloping algebra.Journal of Algebra, 325, 1, 2011, 440-460, MR 2745549, 10.1016/j.jalgebra.2010.09.028
Reference: [24] Burde, D., Vercammen, K. Dekimpe and K.: Affine actions on Lie groups and post-Lie algebra structures.Linear Algebra and its Applications, 437, 5, 2012, 1250-1263, MR 2942346, 10.1016/j.laa.2012.04.007
Reference: [25] Burde, D., Dekimpe, K.: Post-Lie algebra structures and generalized derivations of semisimple Lie algebras.Moscow Mathematical Journal, 13, 1, 2013, 1-18, MR 3112213, 10.17323/1609-4514-2013-13-1-1-18
Reference: [26] Burde, D., Dekimpe, K.: Post-Lie algebra structures on pairs of Lie algebras.Journal of Algebra, 464, 2016, 226-245, MR 3533429, 10.1016/j.jalgebra.2016.05.026
Reference: [27] Burde, D., Moens, W. A.: Commutative post-Lie algebra structures on Lie algebras.Journal of Algebra, 467, 2016, 183-201, MR 3545958, 10.1016/j.jalgebra.2016.07.030
Reference: [28] Burde, D., Globke, W.: Étale representations for reductive algebraic groups with one-dimensional center.Journal of Algebra, 487, 2017, 200-216, MR 3671190, 10.1016/j.jalgebra.2017.06.009
Reference: [29] Burde, D., Globke, W., Minchenko, A.: Étale representations for reductive algebraic groups with factors $Sp_n$ or $SO_n$.Transformation Groups, 24, 3, 2019, 769-780, MR 3989690, 10.1007/s00031-018-9483-8
Reference: [30] Burde, D., Dekimpe, K., Moens, W. A.: Commutative post-Lie algebra structures and linear equations for nilpotent Lie algebras.Journal of Algebra, 526, 2019, 12-29, MR 3914193, 10.1016/j.jalgebra.2019.02.003
Reference: [31] Burde, D., Ender, C., Moens, W. A.: Post-Lie algebra structures for nilpotent Lie algebras.International Journal of Algebra and Computation, 28, 5, 2018, 915-933, MR 3844707, 10.1142/S0218196718500406
Reference: [32] Burde, D., Gubarev, V.: Rota-Baxter operators and post-Lie algebra structures on semisimple Lie algebras.Communications in Algebra, 47, 5, 2019, 2280-2296, MR 3977738, 10.1080/00927872.2018.1536206
Reference: [33] Burde, D., Zusmanovich, P.: Commutative post-Lie algebra structures on Kac-Moody algebras.Communications in Algebra, 47, 12, 2019, 5218-5226, MR 4019336, 10.1080/00927872.2019.1612426
Reference: [34] Burde, D., Ender, C.: Commutative Post-Lie algebra structures on nilpotent Lie algebras and Poisson algebras.Linear Algebra and its Applications, 584, 2020, 107-126, MR 4009591, 10.1016/j.laa.2019.09.010
Reference: [35] Burde, D., Gubarev, V.: Decompositions of algebras and post-associative algebra structures.International Journal of Algebra and Computation, 30, 3, 2020, 451-466, MR 4082417, 10.1142/S0218196720500071
Reference: [36] Buser, P.: A geometric proof of Bieberbach's theorems on crystallographic groups.Enseign. Math., 31, 1-2, 1985, 137-145, MR 0798909
Reference: [37] Dekimpe, K., Igodt, P.: Polycyclic-by-finite groups admit a bounded-degree polynomial structure.Invent. Math., 129, 1, 1997, 121-140, MR 1464868, 10.1007/s002220050160
Reference: [38] Dekimpe, K.: Any virtually polycyclic group admits a NIL-affine crystallographic action.Topology, 42, 4, 2003, 821-832, MR 1958530, 10.1016/S0040-9383(02)00030-7
Reference: [39] Ender, C.: Post-Lie algebra structures on classes of Lie algebras.PhD-thesis, University of Vienna, 2019,
Reference: [40] Fried, D., Goldman, W.: Three-dimensional affine crystallographic groups.Adv. Math., 47, 1983, 1-49, MR 0689763, 10.1016/0001-8708(83)90053-1
Reference: [41] Goldman, W. M.: Two papers which changed my life: Milnor's seminal work on flat manifolds and bundles.Frontiers in complex dynamics, Princeton Math. Ser., 51, 2014, 679-703, MR 3289925
Reference: [42] Gromov, M., Piatetski-Shapiro, I.: Non-arithmetic groups in Lobachevsky spaces.Inst. Hautes Études Sci. Publ. Math., 66, 1988, 93-103, MR 0932135, 10.1007/BF02698928
Reference: [43] Helmstetter, J.: Radical d'une algèbre symétrique a gauche.Ann. Inst. Fourier, 29, 1979, 17-35, MR 0558586, 10.5802/aif.764
Reference: [44] Hilbert, D.: Mathematical problems.Bulletin of the AMS, 87, 10, 1902, 437-479, MR 1557926, 10.1090/S0002-9904-1902-00923-3
Reference: [45] Jacobson, N.: A note on automorphisms and derivations of Lie algebras.Proc. Am. Math. Soc., 6, 1955, 281-283, MR 0068532, 10.1090/S0002-9939-1955-0068532-9
Reference: [46] Margulis, G.A.: Complete affine locally flat manifolds with a free fundamental group.J. Soviet Math., 36, 1987, 129-139, 10.1007/BF01104978
Reference: [47] Milnor, J.: On fundamental groups of complete affinely flat manifolds.Advances in Math., 25, 1977, 178-187, MR 0454886, 10.1016/0001-8708(77)90004-4
Reference: [48] Plesken, W., Schulz, T.: Counting crystallographic groups in low dimensions.Experiment. Math., 9, 3, 2000, 407-411, MR 1795312, 10.1080/10586458.2000.10504417
Reference: [49] Schwarzenberger, R.L.E.: Crystallography in spaces of arbitrary dimension.Proc. Cambridge Philos. Soc., 76, 1974, 23-32, MR 0349867, 10.1017/S0305004100048696
Reference: [50] Segal, D.: The structure of complete left-symmetric algebras.Math. Ann., 293, 1992, 569-578, MR 1170527, 10.1007/BF01444735
Reference: [51] Thurston, W.P.: Three-dimensional geometry and topology. Vol. 1.35, 1997, Edited by Silvio Levy. Princeton Mathematical Series, Princeton University Press, Princeton, NJ, MR 1435975
Reference: [52] Tomanov, G.: Properly discontinuous group actions on affine homogeneous spaces (English summary) Reprinted in Proc. Steklov Inst. Math..Algebra, Geometriya i Teoriya Chisel, 292, 1, 2016, 268-279, MR 3628466
Reference: [53] Vallette, B.: Homology of generalized partition posets.J. Pure and Applied Algebra, 208, 2, 2007, 699-725, MR 2277706, 10.1016/j.jpaa.2006.03.012
Reference: [54] (ed.), E. B. Vinberg: Geometry II.29, 1991, Encyclopedia of Mathematical Sciences, Springer Verlag,
Reference: [55] Zassenhaus, H.: Über einen Algorithmus zur Bestimmung der Raumgruppen (German).Comment. Math. Helv., 21, 1948, 117-141, MR 0024424, 10.1007/BF02568029
.

Files

Files Size Format View
ActaOstrav_29-2021-1_5.pdf 413.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo