Previous |  Up |  Next

Article

Title: The inverse problem in the calculus of variations: new developments (English)
Author: Do, Thoan
Author: Prince, Geoff
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 29
Issue: 1
Year: 2021
Pages: 131-149
Summary lang: English
.
Category: math
.
Summary: We deal with the problem of determining the existence and uniqueness of Lagrangians for systems of $n$ second order ordinary differential equations. A number of recent theorems are presented, using exterior differential systems theory (EDS). In particular, we indicate how to generalise Jesse Douglas's famous solution for $n=2$. We then examine a new class of solutions in arbitrary dimension $n$ and give some non-trivial examples in dimension 3. (English)
Keyword: Inverse problem in the calculus of variations
Keyword: Helmholtz conditions
Keyword: Exterior differential systems
Keyword: Lagrangian system.
MSC: 37J06
MSC: 49N45
MSC: 58A15
MSC: 70H03
idZBL: Zbl 07413361
idMR: MR4251311
.
Date available: 2021-07-09T12:39:18Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148995
.
Reference: [1] Aldridge, J.E.: Aspects of the Inverse Problem in the Calculus of Variations.2003, La Trobe University, Australia,
Reference: [2] Aldridge, J.E., Prince, G. E., Sarlet, W., Thompson, G.: An EDS approach to the inverse problem in the calculus of variations.J. Math. Phys., 47, 2006, MR 2268874, 10.1063/1.2358000
Reference: [3] Anderson, I., Thompson, G.: The inverse problem of the calculus of variations for ordinary differential equations.Memoirs Amer. Math. Soc., 98, 473, 1992, Zbl 0760.49021, MR 1115829, 10.1090/memo/0473
Reference: [4] Bryant, R.L., Chern, S.S., Gardner, R.B., Goldschmidt, H.L., Griffiths, P.A.: Exterior Differential Systems.1991, Springer, MR 1083148
Reference: [5] Crampin, M., Martínez, E., Sarlet, W.: Linear connections for systems of second--order ordinary differential equations.Ann. Inst. H. Poincaré Phys. Théor., 65, 1996, 223-249, MR 1411267
Reference: [6] Crampin, M., Prince, G.E., Sarlet, W., Thompson, G.: The inverse problem of the calculus of variations: separable systems.Acta Appl. Math., 57, 1999, 239-254, MR 1722045, 10.1023/A:1006238108507
Reference: [7] Crampin, M., Prince, G.E., Thompson, G.: A geometric version of the Helmholtz conditions in time-dependent Lagrangian dynamics.J. Phys. A: Math. Gen., 17, 1984, 1437-1447, MR 0748776, 10.1088/0305-4470/17/7/011
Reference: [8] Crampin, M., Sarlet, W., Martínez, E., Byrnes, G.B., Prince, G.E.: Toward a geometrical understanding of Douglas's solution of the inverse problem in the calculus of variations.Inverse Problems, 10, 1994, 245-260, MR 1269007, 10.1088/0266-5611/10/2/005
Reference: [9] Do., T.: The Inverse Problem in the Calculus of Variations via Exterior Differential Systems.2016, La Trobe University, Australia, MR 0879421
Reference: [10] Do, T., Prince, G.E.: New progress in the inverse problem in the calculus of variations.Diff. Geom. Appl., 45, 2016, 148-179, MR 3457392, 10.1016/j.difgeo.2016.01.005
Reference: [11] Douglas, J.: Solution of the inverse problem of the calculus of variations.Trans. Am. Math. Soc., 50, 1941, 71-128, Zbl 0025.18102, MR 0004740, 10.1090/S0002-9947-1941-0004740-5
Reference: [12] Helmholtz, H.: Über der physikalische Bedeutung des Princips der kleinsten Wirkung.J. Reine Angew. Math., 100, 1887, 137-166, MR 1580086
Reference: [13] Henneaux, M.: On the inverse problem of the calculus of variations.J. Phys. A: Math. Gen., 15, 1982, L93-L96, MR 0653398, 10.1088/0305-4470/15/3/002
Reference: [14] Henneaux, M., Shepley, L. C.: Lagrangians for spherically symmetric potentials.J. Math. Phys., 23, 1988, 2101-2107, MR 0680007, 10.1063/1.525252
Reference: [15] Hirsch, A.: Die Existenzbedingungen des verallgemeinterten kinetischen Potentialen.Math. Ann., 50, 1898, 429-441, MR 1511006, 10.1007/BF01448077
Reference: [16] Jerie, M., Prince, G.E.: Jacobi fields, linear connections for arbitrary second order ODE's.J. Geom. Phys., 43, 2002, 351-370, MR 1929913, 10.1016/S0393-0440(02)00030-X
Reference: [17] Krupková, O., Prince, G.E.: Second order ordinary differential equation in jet bundles, the inverse problem of the calculus of variation.2008, in: HandBook of Global Analysis, Elsevier, MR 2389647
Reference: [18] Massa, E., Pagani, E.: Jet bundle geometry, dynamical connections,, the inverse problem of Lagrangian mechanics.Ann. Inst. Henri Poincaré, Phys. Theor., 61, 1994, 17-62, MR 1303184
Reference: [19] Morandi, G., Ferrario, C., Vecchio, G. Lo, Marmo, G., Rubano, C.: The inverse problem in the calculus of variations, the geometry of the tangent bundle.Phys. Rep., 188, 1990, 147-284, MR 1050526, 10.1016/0370-1573(90)90137-Q
Reference: [20] Sarlet, W.: The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics.J. Phys. A: Math. Gen., 15, 1982, 1503-1517, Zbl 0537.70018, MR 0656831, 10.1088/0305-4470/15/5/013
Reference: [21] Sarlet, W., Crampin, M., Martínez, E.: The integrability conditions in the inverse problem of the calculus of variations for second-order ordinary differential equations.Acta Appl. Math., 54, 1998, 233-273, MR 1671779, 10.1023/A:1006102121371
Reference: [22] Sarlet, W., Thompson, G., Prince, G.E.: The inverse problem of the calculus of variations: the use of geometrical calculus in Douglas's analysis.Trans. Amer. Math. Soc., 354, 2002, 2897-2919, MR 1895208, 10.1090/S0002-9947-02-02994-X
Reference: [23] Sonin, N. Ya.: On the definition of maximal, minimal properties.Warsaw Univ. Izvestiya, 1--2, 1886, 1-68,
.

Files

Files Size Format View
ActaOstrav_29-2021-1_8.pdf 390.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo