Title:
|
A look on some results about Camassa–Holm type equations (English) |
Author:
|
Freire, Igor Leite |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 (print) |
ISSN:
|
2336-1298 (online) |
Volume:
|
29 |
Issue:
|
1 |
Year:
|
2021 |
Pages:
|
115-130 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We present an overview of some contributions of the author regarding Camassa--Holm type equations. We show that an equation unifying both Camassa--Holm and Novikov equations can be derived using the invariance under certain suitable scaling, conservation of the Sobolev norm and existence of peakon solutions. Qualitative analysis of the two-peakon dynamics is given. (English) |
Keyword:
|
Invariance |
Keyword:
|
Sobolev norm |
Keyword:
|
peakon solutions |
Keyword:
|
Camassa--Holm equation |
Keyword:
|
Novikov equation |
MSC:
|
35Q51 |
MSC:
|
37K40 |
idZBL:
|
Zbl 07413360 |
idMR:
|
MR4251309 |
. |
Date available:
|
2021-07-09T12:37:28Z |
Last updated:
|
2021-11-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148994 |
. |
Reference:
|
[1] Anco, S., Bluman, G.: Direct construction method for conservation laws of partial differential equations. I. Examples of conservation law classifications.European J. Appl. Math., 13, 5, 2002, 545-566, MR 1939160, 10.1017/S095679250100465X |
Reference:
|
[2] Anco, S., Bluman, G.: Direct construction method for conservation laws of partial differential equations. II. General treatment.European J. Appl. Math., 13, 5, 2002, 567-585, MR 1939161, 10.1017/S0956792501004661 |
Reference:
|
[3] Anco, S., Silva, P.L. da, Freire, I.L.: A family of wave-breaking equations generalizing the Camassa--Holm and Novikov equations.J. Math. Phys., 56, 9, 2015, paper 091506, MR 3395277, 10.1063/1.4929661 |
Reference:
|
[4] Bluman, G.W., Anco, S.: Symmetry and Integration Methods for Differential Equations.2002, Applied Mathematical Sciences 154. Springer, New York, MR 1914342 |
Reference:
|
[5] Bluman, G.W., Kumei, S.: Symmetries and Differential Equations.1989, Applied Mathematical Sciences 81. Springer, New York, Zbl 0698.35001, MR 1006433, 10.1007/978-1-4757-4307-4 |
Reference:
|
[6] Bozhkov, Y., Freire, I.L., Ibragimov, N.: Group analysis of the Novikov equation.Comput. Appl. Math., 33, 1, 2014, 193-202, MR 3187981, 10.1007/s40314-013-0055-1 |
Reference:
|
[7] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.2011, Universitext. Springer, New York, Zbl 1220.46002, MR 2759829 |
Reference:
|
[8] Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons.Phys. Rev. Lett., 71, 11, 1993, 1661-1664, MR 1234453, 10.1103/PhysRevLett.71.1661 |
Reference:
|
[9] Clarkson, P.A., Mansfield, E.L., Priestley, T.J.: Symmetries of a class of nonlinear third-order partial differential equations.Math. Comput. Modelling., 25, 8-9, 1997, 195-212, MR 1465776, 10.1016/S0895-7177(97)00069-1 |
Reference:
|
[10] Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations.Acta Math., 181, 2, 1998, 229-243, MR 1668586, 10.1007/BF02392586 |
Reference:
|
[11] Constantin, A., Strauss, W.A.: Stability of peakons.Comm. Pure Appl. Math., 53, 5, 2000, 603-610, MR 1737505, 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L |
Reference:
|
[12] Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach.Ann. Inst. Fourier, 50, 2, 2000, 321-362, MR 1775353, 10.5802/aif.1757 |
Reference:
|
[13] Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26, 2, 1998, 303-328, MR 1631589 |
Reference:
|
[14] Silva, P.L. da, Freire, I.L.: Strict self-adjointness and shallow water models.arXiv:, 1312.3992, 2013, Preprint.. |
Reference:
|
[15] Silva, P.L. da, Freire, I.L.: On the group analysis of a modified Novikov equation.Interdisciplinary Topics in Applied Mathematics, Modeling and Computational Science, Springer Proceedings in Mathematics & Statistics, 117, 2015, 161-166, Springer, DOI: 10.1007/978-3-319-12307-3_23. MR 3444170, 10.1007/978-3-319-12307-3_23 |
Reference:
|
[16] Silva, P.L. da, Freire, I.L.: An equation unifying both Camassa--Holm and Novikov equations.Dynamical Systems and Differential Equations, Proceedings of the 10th AIMS International Conference, 2015, 304-311, American Institute of Mathematical Sciences, DOI: 10.3934/proc.2015.0304. MR 3462461, 10.3934/proc.2015.0304 |
Reference:
|
[17] Silva, P.L. da, Freire, I.L.: Uma nova equação unificando quatro modelos físicos.Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, 3, 2, 2015, In Portuguese.. |
Reference:
|
[18] Silva, P.L. da, Freire, I.L., Sampaio, J.C.S.: A family of wave equations with some remarkable properties.Proc. A, 474, 2210, 2018, paper 20170763, MR 3782781 |
Reference:
|
[19] Silva, P.L. da, Freire, I.L.: Well-posedness, travelling waves and geometrical aspects of generalizations of the Camassa--Holm equation.J. Differential Equations, 267, 9, 2019, 5318-5369, MR 3991561, 10.1016/j.jde.2019.05.033 |
Reference:
|
[20] Degasperis, A., Procesi, M.: Asymptotic integrability.Symmetry and Perturbation Theory, World Scientific Publishing, River Edge, NJ, 1999, 23-37, MR 1844104 |
Reference:
|
[21] Degasperis, A., Holm, D.D., Hone, A.N.W.: A new integrable equation with peakon solutions.Theoret. and Math. Phys., 133, 2, 2002, 1463-1474, Translated from Russian.. MR 2001531, 10.1023/A:1021186408422 |
Reference:
|
[22] Degasperis, A., Holm, D.D., Hone, A.N.W.: Integrable and non-integrable equations with peakons.Nonlinear Physics: Theory and Experiment, II (Gallipoli, 2002), 2003, 37-43, World Scientific Publishing, River Edge, NJ, See arXiv:nlin/0209008.. MR 2028761 |
Reference:
|
[23] Escher, J.: Breaking water waves.Nonlinear Water Waves, Lecture Notes in Mathematics, vol. 2158, 2016, 83-119, Springer, Switzerland, DOI: 10.1007/978-3-319-31462-4_2. MR 3524896, 10.1007/978-3-319-31462-4_2 |
Reference:
|
[24] Fokas, A.S., Fuchssteiner, B.: Sympletic structures, their Bäcklund transformations and hereditary symmetries.Phys. D, 4, 1, 1981/82, 47-66, MR 0636470 |
Reference:
|
[25] Folland, G.B.: Introduction to partial differential equations. Second edition.1995, Princeton University Press, Princeton, NJ, MR 1357411 |
Reference:
|
[26] Hay, M., Hone, A.N.W., Novikov, V.S., Wang, J.P.: Remarks on certain two-component systems with peakon solutions.J. Geom. Mech., 11, 4, 2019, 561-573, MR 4043678, 10.3934/jgm.2019028 |
Reference:
|
[27] Himonas, A.A., Holliman, C.: The Cauchy problem for a generalized Camassa--Holm equation.Adv. Differential Equations, 19, 1-2, 2014, 161-200, MR 3161659 |
Reference:
|
[28] Holm, D.D., Staley, M.F.: Wave structure and nonlinear balances in a family of evolutionary PDEs.SIAM J. Appl. Dyn. Syst., 2, 3, 2003, 323-380, MR 2031278, 10.1137/S1111111102410943 |
Reference:
|
[29] Hone, A.N.W., Wang, J.P.: Integrable peakon equations with cubic nonlinearity.J. Phys. A, 41, 37, 2008, paper 372002, MR 2430566, 10.1088/1751-8113/41/37/372002 |
Reference:
|
[30] Hone, A.N.W., Lundmark, H., Szmigielski, J.: Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa--Holm type equation.Dyn. Partial Differ. Equ., 6, 3, 2009, 253-289, MR 2569508, 10.4310/DPDE.2009.v6.n3.a3 |
Reference:
|
[31] Hunter, J.K., Nachtergaele, B.: Applied Analysis.2005, World Scientific Publishing, Singapore, MR 1829589 |
Reference:
|
[32] Ibragimov, N.H.: Transformation Groups Applied to Mathematical Physics.1985, Mathematics and its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, Translated from Russian.. MR 0785566 |
Reference:
|
[33] Ibragimov, N.H.: Elementary Lie Group Analysis and Ordinary Differential Equations.1999, Wiley Series in Mathematical Methods in Practice, 4. John Wiley & Sons, Chichester, MR 1679646 |
Reference:
|
[34] Krasil'shchik, J., Verbovetsky, A., Vitolo, R.: The Symbolic Computation of Integrability Structures for Partial Differential Equations.2017, Texts and Monographs in Symbolic Computation. Springer, Cham, MR 3753682 |
Reference:
|
[35] Lenells, J.: Conservation laws of the Camassa-Holm equation.J. Phys. A, 38, 4, 2005, 869-880, MR 2125239, 10.1088/0305-4470/38/4/007 |
Reference:
|
[36] Lenells, J.: Traveling wave solutions of the Camassa-Holm equation.J. Differential Equations, 217, 2, 2005, 393-430, MR 2168830, 10.1016/j.jde.2004.09.007 |
Reference:
|
[37] Mikhailov, A.V., Novikov, V.S.: Perturbative symmetry approach.J. Phys. A, 35, 22, 2002, 4775-4790, MR 1908645, 10.1088/0305-4470/35/22/309 |
Reference:
|
[38] Mikhailov, A.V., Sokolov, V.V.: Symmetries of differential equations and the problem of integrability.Integrability, Lecture Notes in Phys., vol. 767, 2009, 19-88, Springer, Berlin, MR 2867546, 10.1007/978-3-540-88111-7_2 |
Reference:
|
[39] Novikov, V.S.: Generalizations of the Camassa-Holm equation.J. Phys. A, 42, 34, 2009, 342002, MR 2530232, 10.1088/1751-8113/42/34/342002 |
Reference:
|
[40] Olver, P.J.: Evolution equations possessing infinitely many symmetries.J. Mathematical Phys., 18, 6, 1977, 1212-1215, MR 0521611, 10.1063/1.523393 |
Reference:
|
[41] Olver, P.J.: Applications of Lie Groups to Differential Equations. Second edition.1993, Graduate Texts in Mathematics, 107. Springer-Verlag, New York, MR 1240056 |
Reference:
|
[42] Popovych, R.O., Sergyeyev, A.: Conservation laws and normal forms of evolution equations.Phys. Lett. A, 374, 22, 2010, 2210-2217, MR 2629731, 10.1016/j.physleta.2010.03.033 |
Reference:
|
[43] Popovych, R.O., Bihlo, A.: Inverse problem on conservation laws.Phys. D, 401, 2020, paper 132175, MR 4034667, 10.1016/j.physd.2019.132175 |
Reference:
|
[44] M.E.Taylor: Partial Differential Equations I. Basic Theory. Second edition.2011, Applied Mathematical Sciences, 115. Springer, New York, MR 2744150 |
. |