Previous |  Up |  Next

Article

Title: Localization and colocalization in tilting torsion theory for coalgebras (English)
Author: Li, Yuan
Author: Yao, Hailou
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 3
Year: 2021
Pages: 663-688
Summary lang: English
.
Category: math
.
Summary: Tilting theory plays an important role in the representation theory of coalgebras. This paper seeks how to apply the theory of localization and colocalization to tilting torsion theory in the category of comodules. In order to better understand the process, we give the (co)localization for morphisms, (pre)covers and special precovers. For that reason, we investigate the (co)localization in tilting torsion theory for coalgebras. (English)
Keyword: (pre)cover
Keyword: tilting comodule
Keyword: (co)localization
Keyword: torsion theory
MSC: 16T15
MSC: 18E40
MSC: 18G05
idZBL: 07396190
idMR: MR4295238
DOI: 10.21136/CMJ.2021.0038-20
.
Date available: 2021-08-02T08:02:24Z
Last updated: 2023-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/149049
.
Reference: [1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Volume 1. Techniques of Representation Theory.London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). Zbl 1092.16001, MR 2197389, 10.1017/CBO9780511614309
Reference: [2] Chin, W., Simson, D.: Coxeter transformation and inverses of Cartan matrices for coalgebras.J. Algebra 324 (2010), 2223-2248. Zbl 1214.16011, MR 2684139, 10.1016/j.jalgebra.2010.06.029
Reference: [3] Cuadra, J., Gómez-Torrecillas, J.: Idempotents and Morita-Takeuchi theory.Commun. Algebra 30 (2002), 2405-2426. Zbl 1006.16050, MR 1904645, 10.1081/AGB-120003476
Reference: [4] Dăscălescu, S., Năstăsescu, C., Raianu, Ş.: Hopf Algebras: An Introduction.Pure and Applied Mathematics, Marcel Dekker 235. Marcel Dekker, New York (2001). Zbl 0962.16026, MR 1786197, 10.1201/9781482270747
Reference: [5] Fu, X., Hu, Y., Yao, H.: The resolution dimensions with respect to balanced pairs in the recollement of abelian categories.J. Korean Math. Soc. 56 (2019), 1031-1048. Zbl 07128259, MR 3978243, 10.4134/JKMS.j180577
Reference: [6] Fu, X., Yao, H.: On Gorenstein coalgebras.Front. Math. China 11 (2016), 845-867. Zbl 1370.16028, MR 3531034, 10.1007/s11464-016-0562-7
Reference: [7] Gabriel, P.: Des catégories abéliennes.Bull. Soc. Math. Fr. 90 (1962), 323-448 French. Zbl 0201.35602, MR 0232821, 10.24033/bsmf.1583
Reference: [8] Gómez-Torrecillas, J., Năstăsescu, C., Torrecillas, B.: Localization in coalgebras: Applications to finiteness conditions.J. Algebra Appl. 2 (2007), 233-243. Zbl 1145.16020, MR 2316418, 10.1142/S0219498807002156
Reference: [9] Jara, P., Merino, L. M., Llena, D., Ştefan, D.: Hereditary and formally smooth coalgebras.Algebr. Represent. Theory 8 (2005), 363-374. Zbl 1098.16014, MR 2176142, 10.1007/s00000-005-8110-3
Reference: [10] Jara, P., Merino, L. M., Navarro, G.: Localization in tame and wild coalgebras.J. Pure Appl. Algebra 211 (2007), 342-359. Zbl 1124.16014, MR 2340452, 10.1016/j.jpaa.2007.01.009
Reference: [11] Jara, P., Merino, L. M., Navarro, G., Ruiz, J. F.: Localization in coalgebras: Stable localizations and path coalgebras.Commun. Algebra 34 (2006), 2843-2856. Zbl 1118.16027, MR 2250572, 10.1080/00927870600637066
Reference: [12] Kleiner, M., Reiten, I.: Abelian categories, almost split sequences, and comodules.Trans. Am. Math. Soc. 357 (2005), 3201-3214. Zbl 1068.18010, MR 2135742, 10.1090/S0002-9947-04-03571-8
Reference: [13] Kosakowska, J., Simson, D.: Hereditary coalgebras and representations of species.J. Algebra 293 (2005), 457-505. Zbl 1116.16038, MR 2173711, 10.1016/j.jalgebra.2005.04.019
Reference: [14] Lin, B. I.: Semiperfect coalgebras.J. Algebra 49 (1977), 357-373. Zbl 0369.16010, MR 0498663, 10.1016/0021-8693(77)90246-0
Reference: [15] Liu, H., Zhang, S.: Equivalences induced by $n$-self-cotilting comodules.Adv. Pure Appl. Math. 2 (2011), 109-131. Zbl 1221.16025, MR 2769312, 10.1515/apam.2010.029
Reference: [16] Montgomery, S.: Hopf Algebras and Their Actions on Rings.Regional Conference Series in Mathematics 82. American Mathematical Society, Providence (1993). Zbl 0793.16029, MR 1243637, 10.1090/cbms/082
Reference: [17] Montgomery, S.: Indecomposable coalgebras, simple comodules, and pointed Hopf algebras.Proc. Am. Math. Soc. 123 (1995), 2343-2351. Zbl 0836.16024, MR 1257119, 10.1090/S0002-9939-1995-1257119-3
Reference: [18] Năstăsescu, C., Torrecillas, B.: Torsion theories for coalgebras.J. Pure Appl. Algebra 97 (1994), 203-220. Zbl 0820.16026, MR 1312762, 10.1016/0022-4049(94)00009-3
Reference: [19] Năstăsescu, C., Torrecillas, B.: Colocalization on Grothendieck categories with applications to coalgebras.J. Algebra 185 (1996), 108-124. Zbl 0863.18007, MR 1409977, 10.1006/jabr.1996.0315
Reference: [20] Navarro, G.: Representation Theory of Coalgebras. Localization in Coalgebras: PhD Thesis.Universidad de Granada, Granada (2006).
Reference: [21] Navarro, G.: Simple comodules and localization in coalgebras.New Techniques in Hopf Algebras and Graded Ring Theory Koninklijke Vlaamse Academie van Belgie voor Wetenschappen en Kunsten, Brussel (2007), 141-164. Zbl 1146.16021, MR 2395772
Reference: [22] Navarro, G.: Some remarks on localization in coalgebras.Commun. Algebra 36 (2008), 3447-3466. Zbl 1157.16013, MR 2441125, 10.1080/00927870802107868
Reference: [23] Nowak, S., Simson, D.: Locally Dynkin quivers and hereditary coalgebras whose left comodules are direct sums of finite dimensional comodules.Commun. Algebra 30 (2002), 455-476. Zbl 1005.16037, MR 1880685, 10.1081/AGB-120006503
Reference: [24] Radford, D. E.: On the structure of pointed coalgebras.J. Algebra 77 (1982), 1-14. Zbl 0487.16011, MR 0665161, 10.1016/0021-8693(82)90274-5
Reference: [25] Simson, D.: Coalgebras, comodules, pseudocompact algebras and tame comodule type.Colloq. Math. 90 (2001), 101-150. Zbl 1055.16038, MR 1874368, 10.4064/cm90-1-9
Reference: [26] Simson, D.: Path coalgebras of quivers with relations and a tame-wild dichotomy problem for coalgebras.Rings, Modules, Algebras, and Abelian Groups Lecture Notes in Pure and Applied Mathematics 236. Marcel Dekker, New York (2004), 465-492. Zbl 1072.16015, MR 2050733
Reference: [27] Simson, D.: Irreducible morphisms, the Gabriel quiver and colocalisations for coalgebras.Int. J. Math. Math. Sci. 2006 (2006), Article ID 47146, 16 pages. Zbl 1171.16008, MR 2251741, 10.1155/IJMMS/2006/47146
Reference: [28] Simson, D.: Hom-computable coalgebras, a composition factors matrix and an Euler bilinear form of an Euler coalgebra.J. Algebra 315 (2007), 42-75. Zbl 1131.16020, MR 2344333, 10.1016/j.jalgebra.2007.01.024
Reference: [29] Simson, D.: Localising embeddings of comodule categories with applications to tame and Euler coalgebras.J. Algebra 312 (2007), 455-494. Zbl 1136.16036, MR 2320469, 10.1016/j.jalgebra.2006.11.043
Reference: [30] Simson, D.: Cotilted coalgebras and tame comodule type.Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 421-445. Zbl 1186.16039, MR 2500051
Reference: [31] Simson, D.: Representation-directed incidence coalgebras of intervally finite posets and the tame-wild dichotomy.Commun. Algebra 36 (2008), 2764-2784. Zbl 1191.16035, MR 2422517, 10.1080/00927870802068342
Reference: [32] Simson, D.: Tame-wild dichotomy for coalgebras.J. Lond. Math. Soc., II. Ser. 78 (2008), 783-797. Zbl 1175.16029, MR 2456905, 10.1112/jlms/jdn047
Reference: [33] Simson, D.: Incidence coalgebras of intervally finite posets, their integral quadratic forms and comodule categories.Colloq. Math. 115 (2009), 259-295. Zbl 1173.16009, MR 2491748, 10.4064/cm115-2-9
Reference: [34] Simson, D.: Coalgebras of tame comodule type, comodule categories, and a tame-wild dichotomy problem.Representation of Algebras and Related Topics EMS Series of Congress Reports, European Mathematical Society, Zürich (2011), 561-660. Zbl 1301.16042, MR 2931905, 10.4171/101-1/12
Reference: [35] Sweedler, M. E.: Hopf Algebras.Mathematics Lecture Note Series. W. A. Benjamin, New York (1969). Zbl 0194.32901, MR 0252485
Reference: [36] Takeuchi, M.: Morita theorems for categories of comodules.J. Fac. Sci., Univ. Tokyo, Sect. I A 24 (1977), 629-644. Zbl 0385.18007, MR 0472967
Reference: [37] Wang, M.: Tilting comodules over semi-perfect coalgebras.Algebra Colloq. 6 (1999), 461-472. Zbl 0945.16034, MR 1809680
Reference: [38] Woodcock, D.: Some categorical remarks on the representation theory of coalgebras.Commun. Algebra 25 (1997), 2775-2794. Zbl 0883.18011, MR 1458729, 10.1080/00927879708826022
Reference: [39] Zhang, S., Yao, H.: Some remarks on cotilting comodules.Front. Math. China 9 (2014), 699-714. Zbl 1326.16030, MR 3195842, 10.1007/s11464-014-0345-y
.

Files

Files Size Format View
CzechMathJ_71-2021-3_4.pdf 345.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo