Previous |  Up |  Next

Article

Title: On the Diophantine equation $(2^x-1)(p^y-1)=2z^2$ (English)
Author: Tong, Ruizhou
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 3
Year: 2021
Pages: 689-696
Summary lang: English
.
Category: math
.
Summary: Let $p$ be an odd prime. By using the elementary methods we prove that: (1) if $2\nmid x$, $p\equiv \pm 3\pmod 8,$ the Diophantine equation $(2^{x}-1)(p^{y}-1)=2z^{2}$ has no positive integer solution except when $p=3$ or $p$ is of the form $p=2a_{0}^{2}+1$, where $a_{0}>1$ is an odd positive integer. (2) if $2\nmid x$, $2\mid y$, $y\neq 2,4,$ then the Diophantine equation $(2^{x}-1)(p^{y}-1)=2z^{2}$ has no positive integer solution. (English)
Keyword: elementary method
Keyword: Diophantine equation
Keyword: positive integer solution
MSC: 11B39
MSC: 11D61
idZBL: 07396191
idMR: MR4295239
DOI: 10.21136/CMJ.2021.0057-20
.
Date available: 2021-08-02T08:02:57Z
Last updated: 2023-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/149050
.
Reference: [1] Cao, Z.: On the Diophantine equation $x^{2n}-Dy^{2}=1$.Proc. Am. Math. Soc. 98 (1986), 11-16. Zbl 0596.10016, MR 0848864, 10.1090/S0002-9939-1986-0848864-4
Reference: [2] Cao, Z.: Introduction to Diophantine Equations.Harbin Institute of Technology Press, Harbin (1989), Chinese. Zbl 0849.11029, MR 1029025
Reference: [3] Cohn, J. H. E.: The Diophantine equation $(a^n-1)(b^n-1)=x^2$.Period. Math. Hung. 44 (2002), 169-175. Zbl 1012.11024, MR 1918683, 10.1023/A:1019688312555
Reference: [4] Guo, X.: A note on the Diophantine equation $(a^n-1)(b^n-1)=x^2$.Period. Math. Hung. 66 (2013), 87-93. Zbl 1274.11089, MR 3018202, 10.1007/s10998-012-6964-8
Reference: [5] Hajdu, L., Szalay, L.: On the Diophantine equation $(2^n-1)(6^n-1)=x^2$ and $(a^n-1)(a^{kn}-1)=x^2$.Period. Math. Hung. 40 (2000), 141-145. Zbl 0973.11015, MR 1805312, 10.1023/A:1010335509489
Reference: [6] He, G.: A note on the exponential Diophantine equation $(a^m-1)(b^n-1)=x^2$.Pure Appl. Math. 27 (2011), 581-585 Chinese. Zbl 1249.11056, MR 2906439
Reference: [7] Keskin, R.: A note on the exponential Diophantine equation $(a^n-1)(b^n-1)=x^2$.Proc. Indian Acad. Sci., Math. Sci. 129 (2019), Article ID 69, 12 pages. Zbl 1422.11071, MR 3993857, 10.1007/s12044-019-0520-x
Reference: [8] Luo, J.: On the Diophantine equation $\frac{a^{n}x^{m}\pm1}{a^{n}x\pm1}=y^{n}+1$.J. Sichuan Univ., Nat. Sci. Ed. 36 (1999), 1022-1026 Chinese. Zbl 0948.11016, MR 1746962
Reference: [9] Noubissie, A., Togbé, A.: A note on the exponential Diophantine equation $(a^n-1)\*(b^n-1)=x^2$.Ann. Math. Inform. 50 (2019), 159-165. Zbl 07174847, MR 4048812, 10.33039/ami.2019.11.002
Reference: [10] Szalay, L.: On the Diophantine equation $(2^n-1)(3^n-1)=x^2$.Publ. Math. 57 (2000), 1-9. Zbl 0961.11013, MR 1771666
Reference: [11] Tang, M.: A note on the exponential Diophantine equation $(a^m-1)(b^n-1)=x^2$.J. Math. Res. Expo. 6 (2011), 1064-1066. Zbl 1265.11065, MR 2896318, 10.3770/j.issn:1000-341X.2011.06.014
Reference: [12] Waall, R. W. van der: On the Diophantine equations $x^2+x+1=3v^2$, $x^3-1=2y^2$, $x^3+1=2y^2$.Simon Stevin 46 (1972), 39-51. Zbl 0246.10011, MR 0316374
Reference: [13] Walsh, P. G.: On Diophantine equations of the form $(x^n-1)(y^m-1)=z^2$.Tatra Mt. Math. Publ. 20 (2000), 87-89. Zbl 0992.11029, MR 1845448
Reference: [14] Yuan, P., Zhang, Z.: On the Diophantine equation $(a^n-1)(b^n-1)=x^2$.Publ. Math. 80 (2012), 327-331. Zbl 1263.11045, MR 2943006, 10.5486/PMD.2012.5004
.

Files

Files Size Format View
CzechMathJ_71-2021-3_5.pdf 207.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo