Title:
|
The linear syzygy graph of a monomial ideal and linear resolutions (English) |
Author:
|
Manouchehri, Erfan |
Author:
|
Soleyman Jahan, Ali |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
71 |
Issue:
|
3 |
Year:
|
2021 |
Pages:
|
785-802 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For each squarefree monomial ideal $I\subset S = k[x_{1},\ldots , x_{n}] $, we associate a simple finite graph $G_I$ by using the first linear syzygies of $I$. The nodes of $G_I$ are the generators of $I$, and two vertices $u_i$ and $u_j$ are adjacent if there exist variables $x, y$ such that $xu_i = yu_j$. In the cases, where $G_I$ is a cycle or a tree, we show that $I$ has a linear resolution if and only if $I$ has linear quotients and if and only if $ I $ is variable-decomposable. In addition, with the same assumption on $G_I$, we characterize all squarefree monomial ideals with a linear resolution. Using our results, we characterize all Cohen-Macaulay codimension $2$ monomial ideals with a linear resolution. As another application of our results, we also characterize all Cohen-Macaulay simplicial complexes in the case, where $G_{\Delta }\cong G_{I_{\Delta ^{\vee }}}$ is a cycle or a tree. (English) |
Keyword:
|
monomial ideal |
Keyword:
|
linear resolution, linear quotient |
Keyword:
|
variable-decomposability |
Keyword:
|
Cohen-Macaulay simplicial complex |
MSC:
|
13D02 |
MSC:
|
13F20 |
MSC:
|
13F55 |
idZBL:
|
07396197 |
idMR:
|
MR4295245 |
DOI:
|
10.21136/CMJ.2020.0099-20 |
. |
Date available:
|
2021-08-02T08:06:35Z |
Last updated:
|
2023-10-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149056 |
. |
Reference:
|
[1] Abbott, J., Bigatti, A. M., Lagorio, G.: CoCoA-5: A system for doing Computations in Commutative Algebra.Available at http://cocoa.dima.unige.it/. |
Reference:
|
[2] Ajdani, S. M., Jahan, A. S.: Vertex decomposability of 2-CM and Gorenstein simplicial complexes of codimension 3.Bull. Malays. Math. Sci. Soc. (2) 39 (2016), 609-617. Zbl 1333.13031, MR 3471335, 10.1007/s40840-015-0129-x |
Reference:
|
[3] Bigdeli, M., Herzog, J., Zaare-Nahandi, R.: On the index of powers of edge ideals.Commun. Algebra 46 (2018), 1080-1095. Zbl 1428.13032, MR 3780221, 10.1080/00927872.2017.1339058 |
Reference:
|
[4] Conca, A., Negri, E. De: $M$-sequences, graph ideals, and ladder ideals of linear type.J. Algebra 211 (1999), 599-624. Zbl 0924.13012, MR 1666661, 10.1006/jabr.1998.7740 |
Reference:
|
[5] Conca, A., Herzog, J.: Castelnuovo-Mumford regularity of product of ideals.Collect. Math. 54 (2003), 137-152. Zbl 1074.13004, MR 1995137 |
Reference:
|
[6] Eagon, J. A., Reiner, V.: Resolutions of Stanley-Reisner rings and Alexander duality.J. Pure Appl. Algebra 130 (1998), 265-275. Zbl 0941.13016, MR 1633767, 10.1016/S0022-4049(97)00097-2 |
Reference:
|
[7] Emtander, E.: A class of hypergraphs that generalizes chordal graphs.Math. Scand. 106 (2010), 50-66. Zbl 1183.05053, MR 2603461, 10.7146/math.scand.a-15124 |
Reference:
|
[8] Francisco, C. A., Tuyl, A. Van: Sequentially Cohen-Macaulay edge ideals.Proc. Am. Math. Soc. 135 (2007), 2327-2337. Zbl 1128.13013, MR 2302553, 10.1090/S0002-9939-07-08841-7 |
Reference:
|
[9] Fröberg, R.: On Stanley-Reisner rings.Topics in Algebra. Part 2. Commutative Rings and Algebraic Groups Banach Center Publications 26. Polish Academy of Sciences, Institute of Mathematics, Warszaw (1990), 57-70. Zbl 0741.13006, MR 1171260 |
Reference:
|
[10] Herzog, J., Hibi, T.: Monomial Ideals.Graduate Texts in Mathematics 260. Springer, London (2011). Zbl 1206.13001, MR 2724673, 10.1007/978-0-85729-106-6 |
Reference:
|
[11] Herzog, J., Hibi, T., Zheng, X.: Monomial ideals whose powers have a linear resolution.Math. Scand. 95 (2004), 23-32. Zbl 1091.13013, MR 2091479, 10.7146/math.scand.a-14446 |
Reference:
|
[12] Herzog, J., Takayama, Y.: Resolutions by mapping cones.Homology Homotopy Appl. 4 (2002), 277-294. Zbl 1028.13008, MR 1918513, 10.4310/HHA.2002.v4.n2.a13 |
Reference:
|
[13] Morales, M.: Simplicial ideals, 2-linear ideals and arithmetical rank.J. Algebra 324 (2010), 3431-3456. Zbl 1217.13007, MR 2735392, 10.1016/j.jalgebra.2010.08.025 |
Reference:
|
[14] Rahmati-Asghar, R., Yassemi, S.: $k$-decomposable monomial ideals.Algebra Colloq. 22 (2015), 745-756. Zbl 1332.13019, MR 3420707, 10.1142/S1005386715000656 |
Reference:
|
[15] Madani, S. Saeedi, Kiani, D., Terai, N.: Sequentially Cohen-Macaulay path ideals of cycles.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 54 (2011), 353-363. Zbl 1265.13016, MR 2917856 |
Reference:
|
[16] Woodroofe, R.: Chordal and sequentially Cohen-Macaulay clutters.Electron. J. Comb. 18 (2011), Article ID P208, 20 pages. Zbl 1236.05213, MR 2853065 |
. |