Previous |  Up |  Next

Article

Title: Weak dimensions and Gorenstein weak dimensions of group rings (English)
Author: Xiang, Yueming
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 3
Year: 2021
Pages: 803-816
Summary lang: English
.
Category: math
.
Summary: Let $K$ be a field, and let $G$ be a group. In the present paper, we investigate when the group ring $K[G]$ has finite weak dimension and finite Gorenstein weak dimension. We give some analogous versions of Serre's theorem for the weak dimension and the Gorenstein weak dimension. (English)
Keyword: weak dimension
Keyword: Gorenstein weak dimension
Keyword: principal module
Keyword: group ring
MSC: 16E10
MSC: 16E30
MSC: 16S34
idZBL: 07396198
idMR: MR4295246
DOI: 10.21136/CMJ.2021.0102-20
.
Date available: 2021-08-02T08:07:06Z
Last updated: 2023-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/149057
.
Reference: [1] Auslander, M.: On regular group rings.Proc. Am. Math. Soc. 8 (1957), 658-664. Zbl 0079.26703, MR 0087670, 10.1090/S0002-9939-1957-0087670-X
Reference: [2] Auslander, M., Bridger, M.: Stable Module Theory.Memoirs of the American Mathematical Society 94. American Mathematical Society, Providence (1969). Zbl 0204.36402, MR 0269685, 10.1090/memo/0094
Reference: [3] Bennis, D., Mahdou, N.: Global Gorenstein dimensions.Proc. Am. Math. Soc. 138 (2010), 461-465. Zbl 1205.16007, MR 2557164, 10.1090/S0002-9939-09-10099-0
Reference: [4] Benson, D. J., Goodearl, K. R.: Periodic flat modules, and flat modules for finite groups.Pac. J. Math. 196 (2000), 45-67. Zbl 1073.20500, MR 1797235, 10.2140/pjm.2000.196.45
Reference: [5] Colby, R. R.: Rings which have flat injective modules.J. Algebra 35 (1975), 239-252. Zbl 0306.16015, MR 0376763, 10.1016/0021-8693(75)90049-6
Reference: [6] Connell, I. G.: On the group ring.Can. J. Math. 15 (1963), 650-685. Zbl 0121.03502, MR 0153705, 10.4153/CJM-1963-067-0
Reference: [7] Emmanouil, I.: On the finiteness of Gorenstein homological dimensions.J. Algebra 372 (2012), 376-396. Zbl 1286.13014, MR 2990016, 10.1016/j.jalgebra.2012.09.018
Reference: [8] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules.Math. Z. 220 (1995), 611-633. Zbl 0845.16005, MR 1363858, 10.1007/BF02572634
Reference: [9] Glaz, S.: Commutative Coherent Rings.Lecture Notes in Mathematics 1371. Springer, Berlin (1989). Zbl 0745.13004, MR 0999133, 10.1007/BFb0084570
Reference: [10] Govorov, V. E.: On flat modules.Sib. Mat. Zh. 6 (1965), 300-304 Russian. Zbl 0156.27104, MR 0174598
Reference: [11] Holm, H.: Gorenstein Homological Algebra: Ph.D. Thesis.University of Copenhagen, Copenhagen (2004). MR 2038564
Reference: [12] Holm, H.: Gorenstein homological dimensions.J. Pure Appl. Algebra 189 (2004), 167-193. Zbl 1050.16003, MR 2038564, 10.1016/j.jpaa.2003.11.007
Reference: [13] Lam, T. Y.: A First Course in Noncommutative Rings.Graduate Texts in Mathematics 131. Springer, New York (2001). Zbl 0980.16001, MR 1838439, 10.1007/978-1-4419-8616-0
Reference: [14] Li, L.: Representations of modular skew group algebras.Trans. Am. Math. Soc. 367 (2015), 6293-6314. Zbl 1329.16020, MR 3356938, 10.1090/S0002-9947-2015-06242-4
Reference: [15] Passman, D. S.: The Algebraic Structure of Group Rings.John Wiley, New York (1977). Zbl 0368.16003, MR 0470211
Reference: [16] Rotman, J. J.: An Introduction to Homological Algebra.Pure and Applied Mathematics 85. Academic Press, New York (1979). Zbl 0441.18018, MR 0538169, 10.1007/b98977
Reference: [17] Stammbach, U.: On the weak homological dimension of the group algebra of solvable groups.J. Lond. Math. Soc., II. Ser. 2 (1970), 567-570. Zbl 0204.35302, MR 0263927, 10.1112/jlms/2.Part_3.567
Reference: [18] Swan, R. G.: Groups of cohomological dimension one.J. Algebra 12 (1969), 585-601. Zbl 0188.07001, MR 0240177, 10.1016/0021-8693(69)90030-1
Reference: [19] Xiang, Y.: Homological dimensions of skew group rings.Algebra Colloq. 27 (2020), 319-330. Zbl 07202815, MR 4095944, 10.1142/S1005386720000267
.

Files

Files Size Format View
CzechMathJ_71-2021-3_12.pdf 245.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo