Previous |  Up |  Next

Article

Title: Finite groups with some SS-supplemented subgroups (English)
Author: Jiang, Mengling
Author: Liu, Jianjun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 3
Year: 2021
Pages: 837-846
Summary lang: English
.
Category: math
.
Summary: A subgroup $H$ of a finite group $G$ is said to be SS-supplemented in $G$ if there exists a subgroup $K$ of $G$ such that $G=HK$ and $H\cap K$ is S-quasinormal in $K$. We analyze how certain properties of SS-supplemented subgroups influence the structure of finite groups. Our results improve and generalize several recent results. (English)
Keyword: SS-supplemented subgroup
Keyword: maximal subgroup
Keyword: solvable group
Keyword: minimal subgroup
MSC: 20D10
MSC: 20D20
idZBL: 07396201
idMR: MR4295249
DOI: 10.21136/CMJ.2021.0110-20
.
Date available: 2021-08-02T08:08:30Z
Last updated: 2023-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/149060
.
Reference: [1] Asaad, M., Ballester-Bolinches, A., Aguilera, M. C. Pedraza: A note on minimal subgroups of finite groups.Commun. Algebra 24 (1996), 2771-2776. Zbl 0856.20015, MR 1393283, 10.1080/00927879608542654
Reference: [2] Baer, R.: Classes of finite groups and their properties.Ill. J. Math. 1 (1957), 115-187. Zbl 0077.03003, MR 0087655, 10.1215/ijm/1255379396
Reference: [3] Ballester-Bolinches, A.: $h$-normalizers and local definition of saturated formation of finite groups.Isr. J. Math. 67 (1989), 312-326. Zbl 0689.20036, MR 1029905, 10.1007/bf02764949
Reference: [4] Doerk, K., Hawkes, T.: Finite Soluble Groups.De Gruyter Expositions in Mathematics 4. Walter de Gruyter, Berlin (1992). Zbl 0753.20001, MR 1169099, 10.1515/9783110870138
Reference: [5] Dornhoff, L.: $M$-groups and 2-groups.Math. Z. 100 (1967), 226-256. Zbl 0157.35503, MR 0217174, 10.1007/BF01109806
Reference: [6] Guo, X., Lu, J.: On $SS$-supplemented subgroups of finite groups and their properties.Glasg. Math. J. 54 (2012), 481-491. Zbl 1256.20018, MR 2965394, 10.1017/s0017089512000079
Reference: [7] Guo, X., Shum, K. P.: Cover-avoidance properties and the stucture of finite groups.J. Pure Appl. Algebra 181 (2003), 297-308. Zbl 1028.20014, MR 1975303, 10.1016/s0022-4049(02)00327-4
Reference: [8] Huppert, B.: Endliche Gruppen I.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134. Springer, Berlin (1967), German. Zbl 0217.07201, MR 0224703, 10.1007/978-3-642-64981-3
Reference: [9] Itô, N.: Über eine zur Frattini-Gruppe duale Bildung.Nagoya Math. J. 9 (1955), 123-127 German. Zbl 0066.01401, MR 0074410, 10.1017/s0027763000023369
Reference: [10] Kegel, O. H.: Sylow-Gruppen und Subnormalteiler endlicher Gruppen.Math. Z. 78 (1962), 205-221 German. Zbl 0102.26802, MR 0147527, 10.1007/bf01195169
Reference: [11] Lu, J., Guo, X., Li, X.: The influence of minimal subgroups on the stucture of finite groups.J. Algebra Appl. 12 (2013), Article ID 1250189, 8 pages. Zbl 1270.20020, MR 3037264, 10.1142/s0219498812501897
Reference: [12] Lu, J., Qiu, Y.: On solvability of finite groups with some $SS$-supplemented subgroups.Czech. Math. J. 65 (2015), 427-433. Zbl 1363.20009, MR 3360437, 10.1007/s10587-015-0186-1
Reference: [13] Mukherjee, N. P., Bhattacharya, P.: On the intersection of a class of maximal subgroups of a finite group.Can. J. Math. 39 (1987), 603-611. Zbl 0619.20007, MR 0905746, 10.4153/cjm-1987-028-3
Reference: [14] Robinson, D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics 80. Springer, New York (1982). Zbl 0483.20001, MR 0648604, 10.1007/978-1-4419-8594-1
Reference: [15] Rose, J.: On finite insolvable groups with nilpotent maximal subgroups.J. Algebra 48 (1977), 182-196. Zbl 0364.20034, MR 0460457, 10.1016/0021-8693(77)90301-5
Reference: [16] Schmid, P.: Subgroups permutable with all Sylow subgroups.J. Algebra 207 (1998), 285-293. Zbl 0910.20015, MR 1643106, 10.1006/jabr.1998.7429
Reference: [17] Skiba, A. N.: On weakly $s$-permutable subgroups of finite groups.J. Algebra 315 (2007), 192-209. Zbl 1130.20019, MR 2344341, 10.1016/j.jalgebra.2007.04.025
.

Files

Files Size Format View
CzechMathJ_71-2021-3_15.pdf 234.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo