Previous |  Up |  Next

Article

Title: Algebraic properties of Toeplitz operators on weighted Bergman spaces (English)
Author: Appuhamy, Amila
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 3
Year: 2021
Pages: 823-836
Summary lang: English
.
Category: math
.
Summary: We study algebraic properties of two Toeplitz operators on the weighted Bergman space on the unit disk with harmonic symbols. In particular the product property and commutative property are discussed. Further we apply our results to solve a compactness problem of the product of two Hankel operators on the weighted Bergman space on the unit bidisk. (English)
Keyword: Bergman space
Keyword: Toeplitz operator
Keyword: Hankel operator
Keyword: Berezin transform
MSC: 47B35
idZBL: 07396200
idMR: MR4295248
DOI: 10.21136/CMJ.2020.0108-20
.
Date available: 2021-08-02T08:08:06Z
Last updated: 2023-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/149059
.
Reference: [1] Ahern, P.: On the range of the Berezin transform.J. Funct. Anal. 215 (2004), 206-216. Zbl 1088.47014, MR 2085115, 10.1016/j.jfa.2003.08.007
Reference: [2] Ahern, P., Čučković, Ž.: A theorem of Brown-Halmos type for Bergman space Toeplitz operators.J. Funct. Anal. 187 (2001), 200-210. Zbl 0996.47037, MR 1867348, 10.1006/jfan.2001.3811
Reference: [3] Ahern, P., Flores, M., Rudin, W.: An invariant volume-mean-value property.J. Funct. Anal. 111 (1993), 380-397. Zbl 0771.32006, MR 1203459, 10.1006/jfan.1993.1018
Reference: [4] Axler, S., Čučković, Ž.: Commuting Toeplitz operators with harmonic symbols.Integral Equations Oper. Theory 14 (1991), 1-12. Zbl 0733.47027, MR 1079815, 10.1007/BF01194925
Reference: [5] Axler, S., Čučković, Ž., Rao, N. V.: Commutants of analytic Toeplitz operators on the Bergman space.Proc. Am. Math. Soc. 128 (2000), 1951-1953. Zbl 0947.47023, MR 1694299, 10.1090/S0002-9939-99-05436-2
Reference: [6] Brown, A., Halmos, P. R.: Algebraic properties of Toeplitz operators.J. Reine Angew. Math. 213 (1963/64), 89-102. Zbl 0116.32501, MR 0160136, 10.1515/crll.1964.213.89
Reference: [7] Choe, B. R., Lee, Y. J., Nam, K., Zheng, D.: Products of Bergman space Toeplitz operators on the polydisk.Math. Ann. 337 (2007), 295-316. Zbl 1122.47022, MR 2262785, 10.1007/s00208-006-0034-6
Reference: [8] Čučković, Ž., Li, B.: Berezin transform, Mellin transform and Toeplitz operators.Complex Anal. Oper. Theory 6 (2012), 189-218. Zbl 1303.47036, MR 2886615, 10.1007/s11785-010-0051-z
Reference: [9] Čučković, Ž., Rao, N. V.: Mellin transform, monomial symbols, and commuting Toeplitz operators.J. Funct. Anal. 154 (1998), 195-214. Zbl 0936.47015, MR 1616532, 10.1006/jfan.1997.3204
Reference: [10] Čučković, Ž., Şahutoğlu, S.: Compactness of products of Hankel operators on the polydisk and some product domains in $C^2$.J. Math. Anal. Appl. 371 (2010), 341-346. Zbl 1200.32001, MR 2661011, 10.1016/j.jmaa.2010.05.027
Reference: [11] Rao, N. V.: Range of Berezin transform.Available at https://arxiv.org/abs/1003.3939 (2010), 10 pages.
Reference: [12] Zhu, K.: Operator Theory in Function Spaces.Mathematical Surveys and Monographs 138. American Mathematical Society, Providence (2007). Zbl 1123.47001, MR 2311536, 10.1090/surv/138
.

Files

Files Size Format View
CzechMathJ_71-2021-3_14.pdf 253.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo