Title:
|
Algebraic properties of Toeplitz operators on weighted Bergman spaces (English) |
Author:
|
Appuhamy, Amila |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
71 |
Issue:
|
3 |
Year:
|
2021 |
Pages:
|
823-836 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study algebraic properties of two Toeplitz operators on the weighted Bergman space on the unit disk with harmonic symbols. In particular the product property and commutative property are discussed. Further we apply our results to solve a compactness problem of the product of two Hankel operators on the weighted Bergman space on the unit bidisk. (English) |
Keyword:
|
Bergman space |
Keyword:
|
Toeplitz operator |
Keyword:
|
Hankel operator |
Keyword:
|
Berezin transform |
MSC:
|
47B35 |
idZBL:
|
07396200 |
idMR:
|
MR4295248 |
DOI:
|
10.21136/CMJ.2020.0108-20 |
. |
Date available:
|
2021-08-02T08:08:06Z |
Last updated:
|
2023-10-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149059 |
. |
Reference:
|
[1] Ahern, P.: On the range of the Berezin transform.J. Funct. Anal. 215 (2004), 206-216. Zbl 1088.47014, MR 2085115, 10.1016/j.jfa.2003.08.007 |
Reference:
|
[2] Ahern, P., Čučković, Ž.: A theorem of Brown-Halmos type for Bergman space Toeplitz operators.J. Funct. Anal. 187 (2001), 200-210. Zbl 0996.47037, MR 1867348, 10.1006/jfan.2001.3811 |
Reference:
|
[3] Ahern, P., Flores, M., Rudin, W.: An invariant volume-mean-value property.J. Funct. Anal. 111 (1993), 380-397. Zbl 0771.32006, MR 1203459, 10.1006/jfan.1993.1018 |
Reference:
|
[4] Axler, S., Čučković, Ž.: Commuting Toeplitz operators with harmonic symbols.Integral Equations Oper. Theory 14 (1991), 1-12. Zbl 0733.47027, MR 1079815, 10.1007/BF01194925 |
Reference:
|
[5] Axler, S., Čučković, Ž., Rao, N. V.: Commutants of analytic Toeplitz operators on the Bergman space.Proc. Am. Math. Soc. 128 (2000), 1951-1953. Zbl 0947.47023, MR 1694299, 10.1090/S0002-9939-99-05436-2 |
Reference:
|
[6] Brown, A., Halmos, P. R.: Algebraic properties of Toeplitz operators.J. Reine Angew. Math. 213 (1963/64), 89-102. Zbl 0116.32501, MR 0160136, 10.1515/crll.1964.213.89 |
Reference:
|
[7] Choe, B. R., Lee, Y. J., Nam, K., Zheng, D.: Products of Bergman space Toeplitz operators on the polydisk.Math. Ann. 337 (2007), 295-316. Zbl 1122.47022, MR 2262785, 10.1007/s00208-006-0034-6 |
Reference:
|
[8] Čučković, Ž., Li, B.: Berezin transform, Mellin transform and Toeplitz operators.Complex Anal. Oper. Theory 6 (2012), 189-218. Zbl 1303.47036, MR 2886615, 10.1007/s11785-010-0051-z |
Reference:
|
[9] Čučković, Ž., Rao, N. V.: Mellin transform, monomial symbols, and commuting Toeplitz operators.J. Funct. Anal. 154 (1998), 195-214. Zbl 0936.47015, MR 1616532, 10.1006/jfan.1997.3204 |
Reference:
|
[10] Čučković, Ž., Şahutoğlu, S.: Compactness of products of Hankel operators on the polydisk and some product domains in $C^2$.J. Math. Anal. Appl. 371 (2010), 341-346. Zbl 1200.32001, MR 2661011, 10.1016/j.jmaa.2010.05.027 |
Reference:
|
[11] Rao, N. V.: Range of Berezin transform.Available at https://arxiv.org/abs/1003.3939 (2010), 10 pages. |
Reference:
|
[12] Zhu, K.: Operator Theory in Function Spaces.Mathematical Surveys and Monographs 138. American Mathematical Society, Providence (2007). Zbl 1123.47001, MR 2311536, 10.1090/surv/138 |
. |