Previous |  Up |  Next

Article

Title: Rota-type operators on 3-dimensional nilpotent associative algebras (English)
Author: Abdujabborov, N.G.
Author: Kodirova, I.A. Karimjanov and M.A.
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 29
Issue: 2
Year: 2021
Pages: 227-241
Summary lang: English
.
Category: math
.
Summary: We give the description of Rota–Baxter operators, Reynolds operators, Nijenhuis operators and average operators on 3-dimensional nilpotent associative algebras over $\mathbb {C}$. (English)
Keyword: Rota-Baxter operator; Reynolds operator; Nijenhuis operator; average operator; nilpotent; associative algebras
MSC: 16S50
MSC: 16W20
idZBL: Zbl 07426420
idMR: MR4285753
.
Date available: 2021-11-04T12:16:22Z
Last updated: 2021-12-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149191
.
Reference: [1] Bai, R., Guo, L., Li, J., Wu, Y.: Rota-Baxter 3-Lie algebras.J. Math. Phys., 54, 6, 2013, 063504,
Reference: [2] Baxter, G.: An analytic problem whose solution follows from a simple algebraic identity.Pac. J. Math., 10, 1960, 731-742, 10.2140/pjm.1960.10.731
Reference: [3] Belavin, A.A., Drinfel'd, V.G.: Solutions of the classical Yang-Baxter equation for simple Lie algebras.Funct. Anal. its Appl., 16, 3, 1982, 159-180, 10.1007/BF01081585
Reference: [4] Benito, P., Gubarev, V., Pozhidaev, A.: Rota-Baxter operators on quadratic algebras.Mediterr. J. Math, 15, 2018, 1-23, 10.1007/s00009-018-1234-5
Reference: [5] Chengand, Y., Su, Y.: Quantum deformations of the Heisenberg-Virasoro algebra.Algebra Colloq., 20, 2, 2013, 299-308, 10.1142/S1005386713000266
Reference: [6] Graaf, W.A. De: Classification of nilpotent associative algebras of small dimension.Int. J. Algebra Comput., 28, 1, 2018, 133-161, 10.1142/S0218196718500078
Reference: [7] Ebrahimi-Fard, K.: Loday-type algebras and the Rota-Baxter relation.Lett. Math. Phys., 61, 2, 2002, 139-147, 10.1023/A:1020712215075
Reference: [8] Gao, X., Liu, M., Bai, C, Jing, N.: Rota-Baxter operators on Witt and Virasoro algebras.J. Geom. Phys., 108, 2016, 1-20, 10.1016/j.geomphys.2016.06.007
Reference: [9] Guo, L.: An Introdction to Rota-Baxter Algebra.2012, International Press, Beijing, China,
Reference: [10] Guo, L., Keigher, W.: Baxter algebras and shuffle products.Adv. Math., 150, 1, 2000, 117-149, 10.1006/aima.1999.1858
Reference: [11] Guo, L., Liu, Z.: Rota-Baxter operators on generalized power series rings.J. Algebra Its Appl., 8, 4, 2009, 557-564,
Reference: [12] Hazlett, O.C.: On the classification and invariantive characterization of nilpotent algebras.Am. J. Math., 38, 2, 1916, 109-138, 10.2307/2370262
Reference: [13] Karimjanov, I., Kaygorodov, I., Ladra, M.: Rota-type operators on null-filiform associative algebras.Linear and Multilinear algebra, 68, 1, 2020, 205-219, 10.1080/03081087.2018.1501331
Reference: [14] Kruse, R.L., Price, D.T.: Nilpotent Rings.1969, Gordon and Breach Science Publishers, New York,
Reference: [15] Makhlouf, A., Yau, D.: Rota-Baxter Hom-Lie-admissible algebras.Communications in Algebra, 42, 3, 2014, 1231-1257, 10.1080/00927872.2012.737075
Reference: [16] Mazurek, R.: Rota-Baxter operators on skew generalized power series rings.J. Algebra Its Appl., 13, 7, 2014, 1450048, 10.1142/S0219498814500480
Reference: [17] Mazzolla, G.: The algebraic and geometric classification of associative algebras of dimension five.Manuscr. Math., 27, 1, 1979, 81-101, 10.1007/BF01297739
Reference: [18] Mazzolla, G.: Generic finite schemes and Hochschild cocycles.Comment. Math. Helv., 55, 2, 1980, 267-293, 10.1007/BF02566686
Reference: [19] Pan, Y., Liu, Q., Bai, C., Guo, L.: Post Lie algebra structures on the Lie algebra $sl(2,\mathbb {C})$.Electron. J. Linear Algebra, 23, 2012, 180-197,
Reference: [20] Pei, J., Bai, C., Guo, L.: Rota-Baxter operators on $sl(2,\mathbb {C})$ and solutions of the classical Yang-Baxter equation.J. Math. Phys., 55, 2, 2014, 021701, 10.1063/1.4863898
Reference: [21] Tang, X., Zhang, Y., Sun., and Q.: Rota-Baxter operators on 4-dimensional complex simple associative algebras.Appl. Math. Comput., 229, 2014, 173-186,
Reference: [22] Yu, H.: Classification of monomial Rota-Baxter operators on $k[x]$.J. Algebra Its Appl., 15, 5, 2016, 1650087, 10.1142/S0219498816500870
Reference: [23] Zheng, S., Guo, L., Rosenkranz, M.: Rota-Baxter operators on the polynomial algebra, integration, and averaging operators.Pac. J. Math., 275, 2, 2015, 481-507, 10.2140/pjm.2015.275.481
.

Files

Files Size Format View
ActaOstrav_29-2021-2_6.pdf 287.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo