Previous |  Up |  Next

Article

Title: Certain partitions on a set and their applications to different classes of graded algebras (English)
Author: Martín, Antonio J. Calderón
Author: Dieme, Boubacar
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 29
Issue: 2
Year: 2021
Pages: 243-254
Summary lang: English
.
Category: math
.
Summary: Let $({\mathfrak A} , {\epsilon }_{u})$ and $({\mathfrak B} , {\epsilon }_{b})$ be two pointed sets. Given a family of three maps ${\mathcal F}=\{f_1\colon {{\mathfrak A} } \to {\mathfrak A} ; f_2\colon {{\mathfrak A} } \times {\mathfrak A} \to {\mathfrak A} ; f_3\colon {{\mathfrak A} } \times {\mathfrak A} \to {\mathfrak B} \}$, this family provides an adequate decomposition of ${\mathfrak A} \setminus \{ \epsilon _u \}$ as the orthogonal disjoint union of well-described ${\mathcal F}$-invariant subsets. This decomposition is applied to the structure theory of graded involutive algebras, graded quadratic algebras and graded weak $H^*$-algebras. (English)
Keyword: Set
Keyword: application
Keyword: graded algebra
Keyword: involutive algebra
Keyword: quadratic algebra
Keyword: weak $H^*$-algebra
Keyword: structure theory
MSC: 03E75
MSC: 08A05
MSC: 16W50
MSC: 17A01
MSC: 17A45
idZBL: Zbl 07426421
idMR: MR4285754
.
Date available: 2021-11-04T12:17:13Z
Last updated: 2021-12-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149192
.
Reference: [1] Ambrose, W.: Structure theorems for a special class of Banach algebras.Transactions of the American Mathematical Society, 57, 3, 1945, 364-386, JSTOR, 10.1090/S0002-9947-1945-0013235-8
Reference: [2] Bajo, I., Benayadi, S., Medina, A.: Symplectic structures on quadratic Lie algebras.Journal of Algebra, 316, 1, 2007, 174-188, Elsevier, 10.1016/j.jalgebra.2007.06.001
Reference: [3] Benayadi, S.: Structures de certaines algèbres de Lie quadratiques.Communications in Algebra, 23, 10, 1995, 3867-3887, Taylor & Francis, 10.1080/00927879508825437
Reference: [4] Calderón, A.J., Draper, C., Martin, C., Ndoye, D.: Orthogonal-gradings on $ H^* $-algebras.Mediterranean Journal of Mathematics, 15, 1, 2018, 1-18, Springer, 10.1007/s00009-017-1059-7
Reference: [5] Mira, J.A. Cuenca, Mart{í}n, A.G., Gonz{á}lez, C.M.: Structure theory for $L^{*}$-algebras.Mathematical Proceedings of the Cambridge Philosophical Society, 107, 2, 1990, 361-365, Cambridge University Press, 10.1017/S0305004100068626
Reference: [6] Draper, C., Martín, C.: Gradings on $\mathfrak {g}_2$.Linear Algebra and its Applications, 418, 1, 2006, 85-111,
Reference: [7] Draper, C., Martín, C.: Gradings on the Albert algebra and on $\mathfrak {f}_4$.Revista Matemática Iberoamericana, 25, 3, 2009, 841-908, Real Sociedad Matemática Española,
Reference: [8] Elduque, A., Kochetov, M.: Gradings on simple Lie algebras.2013, Mathematical Surveys and Monographs 189, American Mathematical Society,
.

Files

Files Size Format View
ActaOstrav_29-2021-2_7.pdf 372.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo