Title:
|
Conservative algebras of $2$-dimensional algebras, III (English) |
Author:
|
Arzikulov, Farhodjon |
Author:
|
Umrzaqov, Nodirbek |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 (print) |
ISSN:
|
2336-1298 (online) |
Volume:
|
29 |
Issue:
|
2 |
Year:
|
2021 |
Pages:
|
255-267 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In the present paper we prove that every local and $2$-local derivation on conservative algebras of $2$-dimensional algebras are derivations. Also, we prove that every local and $2$-local automorphism on conservative algebras of $2$-dimensional algebras are automorphisms. (English) |
Keyword:
|
Conservative algebra |
Keyword:
|
derivation |
Keyword:
|
local derivation |
Keyword:
|
$2$-local derivation |
Keyword:
|
automorphism |
Keyword:
|
local automorphism |
Keyword:
|
$2$-local automorphism |
MSC:
|
17A15 |
MSC:
|
17A30 |
idZBL:
|
Zbl 07426422 |
idMR:
|
MR4285756 |
. |
Date available:
|
2021-11-04T12:25:41Z |
Last updated:
|
2021-12-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149193 |
. |
Reference:
|
[1] Ayupov, Sh., Arzikulov, F.: $2$-local derivations on semi-finite von Neumann algebras.Glasgow Mathematical Journal, 56, 1, 2014, 9-12, Cambridge University Press, 10.1017/S0017089512000870 |
Reference:
|
[2] Ayupov, Sh., Arzikulov, F.: $2$-Local derivations on associative and Jordan matrix rings over commutative rings.Linear Algebra and its Applications, 522, 2017, 28-50, Elsevier, 10.1016/j.laa.2017.02.012 |
Reference:
|
[3] Ayupov, Sh., Kudaybergenov, K.: $2$-local derivations and automorphisms on $B(H)$.Journal of Mathematical Analysis and Applications, 395, 1, 2012, 15-18, Elsevier, 10.1016/j.jmaa.2012.04.064 |
Reference:
|
[4] Ayupov, Sh., Kudaybergenov, K.: $2$-local derivations on von Neumann algebras.Positivity, 19, 3, 2015, 445-455, Springer, 10.1007/s11117-014-0307-3 |
Reference:
|
[5] Ayupov, Sh., Kudaybergenov, K.: $2$-Local automorphisms on finite-dimensional Lie algebras.Linear Algebra and its Applications, 507, 2016, 121-131, Elsevier, 10.1016/j.laa.2016.05.042 |
Reference:
|
[6] Ayupov, Sh., Kudaybergenov, K.: Local derivations on finite-dimensional Lie algebras.Linear Algebra and its Applications, 493, 2016, 381-398, Elsevier, 10.1016/j.laa.2015.11.034 |
Reference:
|
[7] Ayupov, Sh., Kudaybergenov, K., Omirov, B.: Local and 2-local derivations and automorphisms on simple Leibniz algebras.Bulletin of the Malaysian Mathematical Sciences Society, 43, 3, 2020, 2199-2234, Springer, 10.1007/s40840-019-00799-5 |
Reference:
|
[8] Ayupov, Sh., Kudaybergenov, K., Rakhimov, I.: 2-Local derivations on finite-dimensional Lie algebras.Linear Algebra and its Applications, 474, 2015, 1-11, Elsevier, 10.1016/j.laa.2015.01.016 |
Reference:
|
[9] Chen, Z., Wang, D.: $2$-Local automorphisms of finite-dimensional simple Lie algebras.Linear Algebra and its Applications, 486, 2015, 335-344, Elsevier, 10.1016/j.laa.2015.08.025 |
Reference:
|
[10] Costantini, M.: Local automorphisms of finite dimensional simple Lie algebras.Linear Algebra and its Applications, 562, 2019, 123-134, Elsevier, 10.1016/j.laa.2018.10.009 |
Reference:
|
[11] Kadison, R.V.: Local derivations.Journal of Algebra, 130, 2, 1990, 494-509, 10.1016/0021-8693(90)90095-6 |
Reference:
|
[12] Kantor, I.L.: Certain generalizations of Jordan algebras (Russian).Trudy Sem. Vektor. Tenzor. Anal., 16, 1972, 407-499, |
Reference:
|
[13] Kantor, I.L.: Extension of the class of Jordan algebras.Algebra and Logic, 28, 2, 1989, 117-121, Springer, 10.1007/BF01979375 |
Reference:
|
[14] Kantor, I.L.: The universal conservative algebra.Siberian Mathematical Journal, 31, 3, 1990, 388-395, Springer, 10.1007/BF00970345 |
Reference:
|
[15] Kaygorodov, I., Lopatin, A., Popov, Yu.: Conservative algebras of $2$-dimensional algebras.Linear Algebra and its Applications, 486, 2015, 255-274, Elsevier, 10.1016/j.laa.2015.08.011 |
Reference:
|
[16] Kaygorodov, I., Volkov, Yu.: Conservative algebras of $2$-dimensional algebras, II.Communications in Algebra, 45, 8, 2017, 3413-3421, Taylor & Francis, |
Reference:
|
[17] Kaygorodov, I., Popov, Yu., Pozhidaev, A.: The universal conservative superalgebra.Communications in Algebra, 47, 10, 2019, 4066-4076, Taylor & Francis, 10.1080/00927872.2019.1576189 |
Reference:
|
[18] Kaygorodov, I., Khudoyberdiyev, A., Sattarov, A.: One-generated nilpotent terminal algebras.Communications in Algebra, 48, 10, 2020, 4355-4390, Taylor & Francis, 10.1080/00927872.2020.1761979 |
Reference:
|
[19] Kaygorodov, I., Khrypchenko, M., Popov, Yu.: The algebraic and geometric classification of nilpotent terminal algebras.Journal of Pure and Applied Algebra, 225, 6, 2021, 106625, Elsevier, 10.1016/j.jpaa.2020.106625 |
Reference:
|
[20] Khrypchenko, M.: Local derivations of finitary incidence algebras.Acta Mathematica Hungarica, 154, 1, 2018, 48-55, Springer, 10.1007/s10474-017-0758-7 |
Reference:
|
[21] Kim, S., Kim, J.: Local automorphisms and derivations on $\mathbb {M}_n$.Proceedings of the American Mathematical Society, 132, 5, 2004, 1389-1392, 10.1090/S0002-9939-03-07171-5 |
Reference:
|
[22] Larson, D.R., Sourour, A.R.: Local derivations and local automorphisms of $\mathcal {B}(X)$.Proceedings of Symposia in Pure Mathematics, 51, 2, 1990, 187-194, |
Reference:
|
[23] Lin, Y., Wong, T.: A note on 2-local maps.Proceedings of the Edinburgh Mathematical Society, 49, 3, 2006, 701-708, Cambridge University Press, 10.1017/S0013091504001142 |
Reference:
|
[24] Petersson, H.P.: The classification of two-dimensional nonassociative algebras.Resultate der Mathematik, 37, 1--2, 2000, 120-154, Citeseer, |
Reference:
|
[25] Popov, Yu.: Conservative algebras and superalgebras: a survey.Communications in Mathematics, 28, 2, 2020, 231-251, Sciendo, 10.2478/cm-2020-0018 |
Reference:
|
[26] Šemrl, P.: Local automorphisms and derivations on $\mathcal {B}(H)$.Proceedings of the American Mathematical Society, 125, 9, 1997, 2677-2680, 10.1090/S0002-9939-97-04073-2 |
. |