Previous |  Up |  Next

Article

Title: Partially observable queueing systems with controlled service rates under a discounted optimality criterion (English)
Author: García, Yofre H.
Author: Diaz-Infante, Saul
Author: Minjárez-Sosa, J. Adolfo
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 57
Issue: 3
Year: 2021
Pages: 493-512
Summary lang: English
.
Category: math
.
Summary: We are concerned with a class of $GI/GI/1$ queueing systems with controlled service rates, in which the waiting times are only observed when they take zero value. Applying a suitable filtering process, we show the existence of optimal control policies under a discounted optimality criterion. (English)
Keyword: queueing models
Keyword: partially observable systems
Keyword: discounted criterion
Keyword: optimal policies
MSC: 90B22
MSC: 90C39
idZBL: Zbl 07442521
idMR: MR4299460
DOI: 10.14736/kyb-2021-3-0493
.
Date available: 2021-11-04T12:47:31Z
Last updated: 2022-02-24
Stable URL: http://hdl.handle.net/10338.dmlcz/149203
.
Reference: [1] Bensoussan, A., Cakanyildirim, M., Sethi, S. P.: Partially observed inventory systems: the case of zero-balance walk..SIAM J. Control Optim. 46 (2007), 176-209.
Reference: [2] Bauerle, N., Rieder, U.: Markov Decision Processes with Applications to Finance..Springer, Berlin 2011.
Reference: [3] Bertsekas, D- P., Shreve, S. E.: Stochastic Optimal Control: The Discrete Time Case..Academic Press, New York 1978. Zbl 0633.93001
Reference: [4] Dynkin, E. B., Yushkevich, A. A.: Controlled Markov Processes..Springer-Verlag, New York 1979. MR 0554083
Reference: [5] Elliott, R. J., Aggoun, L., Moore, J. B.: Hidden Markov Models: Estimation and Control..Springer-Verlag, New York 1994.
Reference: [6] Gordienko, E., Hernandez-Lerma, O.: Average cost Markov control processes with weighted norms: value iteration..Appl. Math. 23 (1995), 219-237.
Reference: [7] Gordienko, E., Minjarez-Sosa, J. A.: Adaptive control for discrete-time Markov processes with unbounded costs: discounted criterion..Kybernetika 34 (1998), 217-234.
Reference: [8] Hernandez-Lerma, O.: Adaptive Markov Control Processes..Springer-Verlag, New York 1989.
Reference: [9] Hernandez-Lerma, O., Munoz-de-Ozak, M.: Discrete-time Markov control processes with discounted unbounded costs: optimality criteria..Kybernetika 28 (1992), 191-221.
Reference: [10] Kitaev, M. Y., Rykov, V. V.: Controlled Queueing Systems..CRC Press, Boca Raton 1995.
Reference: [11] Lindley, D. V.: The theory of queues with a single server..Proc. Cambridge Philos Soc. 48 (1952), 277-289.
Reference: [12] Hilgert, N., Minjarez-Sosa, J. A.: Adaptive policies for time-varying stochastic systems under discounted criterion..Math. Methods Oper. Res. 54 (2001), 491-505.
Reference: [13] Minjarez-Sosa, J. A.: Approximation and estimation in Markov control processes under discounted criterion..Kybernetika 40 (2004), 681-690.
Reference: [14] Minjarez-Sosa, J. A.: Markov control models with unknown random state-action-dependent discount factors..TOP 23 (2015), 743-772.
Reference: [15] Runggaldier, W. J., Stettner, L.: Approximations of Discrete Time Partially Observed Control Problems..Appl. Math. Monographs CNR 6, Giardini, Pisa 1994.
Reference: [16] Sennott, L. I.: Stochastic Dynamic Programming and the Control of Queueing Systems..Wiley, New York 1999. Zbl 0997.93503
Reference: [17] Striebel, C.: Optimal Control of Discrete Time Stochastic Systems..Lecture Notes Econ. Math. Syst. 110, Springer-Verlag, Berlin 1975. 10.1007/978-3-642-45470-7
Reference: [18] Yushkevich, A. A.: Reduction of a controlled Markov model with incomplete data to a problem with complete information in the case of Borel state and control spaces..Theory Probab. Appl.21 (1976), 153-158.
.

Files

Files Size Format View
Kybernetika_57-2021-3_6.pdf 587.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo