Previous |  Up |  Next

Article

Title: Finite-time topological identification of complex network with time delay and stochastic disturbance (English)
Author: Qian, Yufeng
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 57
Issue: 3
Year: 2021
Pages: 534-545
Summary lang: English
.
Category: math
.
Summary: The topology identification issue of complex stochastic network with delay and stochastic disturbance is mainly introduced in this paper. It is known the time delay and stochastic disturbance are ubiquitous in real network, and they will impair the identification of network topology, and the topology capable of identifying the network within specific time is desired on the other hand. Based on these discussions, the finite-time identification method is proposed to solve similar issues problems. The validity of theoretical results is proved with the stochastic dynamical system stability theory and finite-time stability theory. Finally, a simple numerical simulation is proposed to verify the feasibility of the method. (English)
Keyword: topology identification
Keyword: finite-time
Keyword: time delay
Keyword: stochastic perturbations
MSC: 34H10
MSC: 93E15
idZBL: Zbl 07442523
idMR: MR4299462
DOI: 10.14736/kyb-2021-3-0534
.
Date available: 2021-11-04T12:49:57Z
Last updated: 2022-02-24
Stable URL: http://hdl.handle.net/10338.dmlcz/149205
.
Reference: [1] Al-Mahbashi, G., Noorani, M.: Finite-time lag synchronization of uncertain complex dynamical networks with disturbances via sliding mode control..IEEE Access 7 (2019), 7082-7092.
Reference: [2] Chen, W. S., Jiao, L. C.: Finite-time stability theorem of stochastic nonlinear systems..Automatica 46 (2010), 12, 2105-2108.
Reference: [3] Chen, L., Lu, J. A., Chi, K. T.: Synchronization: an obstacle to identication of network topology..IEEE Trans. Circuits Syst. II 56 (2009), 4, 310-314.
Reference: [4] Guan, Z. H., Sun, F. L., Wang, Y. W., Li, T.: Finite-time consensus for leader-following second-order multi-agent networks..IEEE Trans. Circuits Syst. I 59 (2012), 11, 2646-2654.
Reference: [5] Guo, S. J., Fu, X. C.: Identifying the topology of networks with discrete-time dynamics..J. Phys. A: Math. Theor. 43 (2010), 29, 295101.
Reference: [6] Hardy, G., Littlewood, J., Polya, G.: Inequalities..Cambridge 1952. Zbl 0634.26008
Reference: [7] Lin, W., Ma, H. F.: Failure of parameter identication based on adaptive synchronization techniques..Phys. Rev. E 75 (2007), 6, 066212.
Reference: [8] Liu, H., Lu, J. A., Lü, J. H., Hill, D. .: Structure identication of uncertain general complex dynamical networks with time delay..Automatica 45 (2009), 8, 1799-1807.
Reference: [9] Lorenz, E. N.: Deterministic nonperiodic flow..J. Atmos. Sci. 20 (1963), 1, 130-141.
Reference: [10] Mao, X. R.: Stochastic versions of the LaSalle theorem..J. Diff. Equat. 153 (1999), 1, 175-195.
Reference: [11] Mei, J., Jiang, M. H., Wang, J.: Finite-time structure identification and synchronization of drive-response systems with uncertain parameter..Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 4, 999-1015.
Reference: [12] Selvaraj, P., Kwon, O., Sakthivel, R.: Disturbance and uncertainty rejection performance for fractional-order complex dynamical networks..Neural Networks 112 (2019), 73-84.
Reference: [13] Sun, Y. Z., Li, W., Zhao, D. H.: Finite-time stochastic outer synchronization between two complex dynamical networks with different topologies..Chaos 22 (2012), 2, 023152.
Reference: [14] Wu, X. Q.: Synchronization-based topology identication of weighted general complex dynamical networks with time-varying coupling delay..Physica A 387 (2008), 4, 997-1008.
Reference: [15] Wu, X. Q., Wang, W. H., Zheng, W. X.: Inferring topologies of complex networks with hidden variables..Phys. Rev. E 86 (2012), 4, 046106.
Reference: [16] Wu, X. Q., Zhao, X. Y., Lü, J. H., Tang, L. K., Lu, J. A.: Topology identification of complex dynamical networks with stochastic perturbations..IEEE Trans. Contr. Net. Syst. 3 (2016), 4, 379-389.
Reference: [17] Wu, X. Q., Zhou, C. S., Chen, G. R., Lu, J. A.: Detecting the topologies of complex networks with stochastic perturbations..Chaos 21 (2011), 4, 043129.
Reference: [18] Xiao, F., Wang, L., Chen, J., Gao, Y. P.: Finite-time formation control for multi-agent systems..Automatica 45 (2009), 11, 2605-2611. Zbl 1180.93006,
Reference: [19] Yu, W. W., Chen, G. R., Cao, J. D., Lü, J. H., Parlitz, U.: Parameter identication of dynamical systems from time series..Phys. Rev. E 75 (2007), 6, 067201.
Reference: [20] Yu, D. C., Righero, M., Kocarev, L.: Estimating topology of networks..Phys. Rev. Lett. 97 (2006), 18, 188701.
Reference: [21] Zhao, J. C., Li, Q., Lu, J. A., Jiang, Z. P.: Topology identication of complex dynamical networks..Chaos 20 (2010), 2, 023119.
Reference: [22] Zhao, H., Li, L. X., Peng, H. P., Xiao, J. H., Yang, Y. X., Zheng, M. W.: Finite-time topology identification and stochastic synchronization of complex network with multiple time delays..Neurocomputing 219 (2017), 39-49.
Reference: [23] Zhao, H., Zheng, M. W.: Finite-time synchronization of coupled memrisive neural network via robust control..IEEE Access 7 (2019), 31820-31831.
Reference: [24] Zhou, J., Lu, J. A.: Topology identication of weighted complex dynamical networks..Physica A 386 (2007), 1, 481-491.
.

Files

Files Size Format View
Kybernetika_57-2021-3_8.pdf 591.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo