Previous |  Up |  Next

Article

Title: Blow-up for 3-D compressible isentropic Navier-Stokes-Poisson equations (English)
Author: Yang, Shanshan
Author: Jiang, Hongbiao
Author: Lin, Yinhe
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 4
Year: 2021
Pages: 1189-1198
Summary lang: English
.
Category: math
.
Summary: We study compressible isentropic Navier-Stokes-Poisson equations in ${\mathbb R}^3$. With some appropriate assumptions on the density, velocity and potential, we show that the classical solution of the Cauchy problem for compressible unipolar isentropic Navier-Stokes-Poisson equations with attractive forcing will blow up in finite time. The proof is based on a contradiction argument, which relies on proving the conservation of total mass and total momentum. (English)
Keyword: compressible isentropic Navier-Stokes-Poisson equation
Keyword: unipolar
Keyword: energy solution
Keyword: blow-up
MSC: 35B44
MSC: 35Q35
idZBL: Zbl 07442484
idMR: MR4339121
DOI: 10.21136/CMJ.2021.0347-20
.
Date available: 2021-11-08T16:06:08Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149248
.
Reference: [1] Cho, Y., Jin, B. J.: Blow-up of viscous heat-conducting compressible flows.J. Math. Anal. Appl. 320 (2006), 819-826. Zbl 1121.35110, MR 2225997, 10.1016/j.jmaa.2005.08.005
Reference: [2] Dong, J., Ju, Q.: Blow-up of smooth solutions to compressible quantum Navier-Stokes equations.Sci. Sin., Math. 50 (2020), 873-884 Chinese. 10.1360/N012018-00134
Reference: [3] Dong, J., Zhu, J., Wang, Y.: Blow-up for the compressible isentropic Navier-Stokes-Poisson equations.Czech. Math. J. 70 (2020), 9-19. Zbl 07217119, MR 4078344, 10.21136/CMJ.2019.0156-18
Reference: [4] Gamba, I. M., Gualdani, M. P., Zhang, P.: On the blowing up of solutions to quantum hydrodynamic models on bounded domains.Monatsh Math. 157 (2009), 37-54. Zbl 1173.35106, MR 2504777, 10.1007/s00605-009-0092-4
Reference: [5] Guo, B., Wang, G.: Blow-up of the smooth solution to quantum hydrodynamic models in $\mathbb R^d$.J. Differ. Equations 261 (2016), 3815-3842. Zbl 1354.35123, MR 3532056, 10.1016/j.jde.2016.06.007
Reference: [6] Guo, B., Wang, G.: Blow-up of solutions to quantum hydrodynamic models in half space.J. Math. Phys. 58 (2017), Article ID 031505, 11 pages. Zbl 1359.76348, MR 3626024, 10.1063/1.4978331
Reference: [7] Jiu, Q., Wang, Y., Xin, Z.: Remarks on blow-up of smooth solutions to the compressible fluid with constant and degenerate viscosities.J. Differ. Equations 259 (2015), 2981-3003. Zbl 1319.35194, MR 3360663, 10.1016/j.jde.2015.04.007
Reference: [8] Lai, N.-A.: Blow up of classical solutions to the isentropic compressible Navier-Stokes equations.Nonlinear Anal., Real World Appl. 25 (2015), 112-117. Zbl 1327.35299, MR 3351014, 10.1016/j.nonrwa.2015.03.005
Reference: [9] Lei, Z., Du, Y., Zhang, Q.: Singularities of solutions to compressible Euler equations with vacuum.Math. Res. Lett. 20 (2013), 41-50. Zbl 1284.35329, MR 3126720, 10.4310/MRL.2013.v20.n1.a4
Reference: [10] Rozanova, O.: Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations.J. Differ. Equations 245 (2008), 1762-1774. Zbl 1154.35070, MR 2433485, 10.1016/j.jde.2008.07.007
Reference: [11] Wang, G., Guo, B., Fang, S.: Blow-up of the smooth solutions to the compressible Navier-Stokes equations.Math. Methods Appl. Sci. 40 (2017), 5262-5272. Zbl 1383.35034, MR 3689262, 10.1002/mma.4384
Reference: [12] Xin, Z.: Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density.Commun. Pure Appl. Math. 51 (1998), 229-240. Zbl 0937.35134, MR 1488513, 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C
Reference: [13] Xin, Z., Yan, W.: On blowup of classical solutions to the compressible Navier-Stokes equations.Commun. Math. Phys. 321 (2013), 529-541. Zbl 1287.35059, MR 3063918, 10.1007/s00220-012-1610-0
.

Files

Files Size Format View
CzechMathJ_71-2021-4_21.pdf 212.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo