Previous |  Up |  Next

Article

Title: An example of a reflexive Lorentz Gamma space with trivial Boyd and Zippin indices (English)
Author: Karlovich, Alexei
Author: Shargorodsky, Eugene
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 4
Year: 2021
Pages: 1199-1209
Summary lang: English
.
Category: math
.
Summary: We show that for every $p\in (1,\infty )$ there exists a weight $w$ such that the Lorentz Gamma space $\Gamma _{p,w}$ is reflexive, its lower Boyd and Zippin indices are equal to zero and its upper Boyd and Zippin indices are equal to one. As a consequence, the Hardy-Littlewood maximal operator is unbounded on the constructed reflexive space $\Gamma _{p,w}$ and on its associate space $\Gamma _{p,w}'$. (English)
Keyword: Lorentz Gamma space
Keyword: reflexivity
Keyword: Boyd indices
Keyword: Zippin indices
MSC: 42B25
MSC: 46E30
idZBL: Zbl 07442485
idMR: MR4339122
DOI: 10.21136/CMJ.2021.0355-20
.
Date available: 2021-11-08T16:06:35Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149249
.
Reference: [1] Bennett, C., Sharpley, R.: Interpolation of Operators.Pure and Applied Mathematics 129. Academic Press, Boston (1988). Zbl 0647.46057, MR 0928802, 10.1016/s0079-8169(08)x6053-2
Reference: [2] Boyd, D. W.: The Hilbert transform on rearrangement-invariant spaces.Can. J. Math. 19 (1967), 599-616. Zbl 0147.11302, MR 0212512, 10.4153/CJM-1967-053-7
Reference: [3] Ciesielski, M.: Relationships between $K$-monotonicity and rotundity properties with application.J. Math. Anal. Appl. 465 (2018), 235-258. Zbl 1402.46010, MR 3806700, 10.1016/j.jmaa.2018.05.008
Reference: [4] Gogatishvili, A., Kerman, R.: The rearrangement-invariant space $\Gamma_{p,\phi}$.Positivity 18 (2014), 319-345. Zbl 1311.46025, MR 3215181, 10.1007/s11117-013-0246-4
Reference: [5] Gogatishvili, A., Pick, L.: Discretization and anti-discretization of rearrangement-invariant norms.Publ. Mat., Barc. 47 (2003), 311-358. Zbl 1066.46023, MR 2006487, 10.5565/PUBLMAT_47203_02
Reference: [6] Kamińska, A., Maligranda, L.: On Lorentz spaces $\Gamma_{p,w}$.Isr. J. Math. 140 (2004), 285-318. Zbl 1068.46019, MR 2054849, 10.1007/BF02786637
Reference: [7] Krejn, S. G., Petunin, Yu. I., Semenov, E. M.: Interpolation of Linear Operators.Translations of Mathematical Monographs 54. American Mathematical Society, Providence (1982). Zbl 0493.46058, MR 0649411, 10.1090/mmono/054
Reference: [8] Maligranda, L.: Indices and interpolation.Diss. Math. 234 (1985), 1-49. Zbl 0566.46038, MR 0820076
Reference: [9] Pick, L., Kufner, A., John, O., Fučík, S.: Function Spaces. Volume 1.De Gruyter Series in Nonlinear Analysis and Applications 14. Walter de Gruyter, Berlin (2013). Zbl 1275.46002, MR 3024912, 10.1515/9783110250428
Reference: [10] Sawyer, E.: Boundedness of classical operators on classical Lorentz spaces.Stud. Math. 96 (1990), 145-158. Zbl 0705.42014, MR 1052631, 10.4064/sm-96-2-145-158
Reference: [11] Zippin, M.: Interpolation of operators of weak type between rearrangement invariant function spaces.J. Funct. Anal. 7 (1971), 267-284. Zbl 0224.46038, MR 0412793, 10.1016/0022-1236(71)90035-8
.

Files

Files Size Format View
CzechMathJ_71-2021-4_22.pdf 242.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo