Title:
|
An example of a reflexive Lorentz Gamma space with trivial Boyd and Zippin indices (English) |
Author:
|
Karlovich, Alexei |
Author:
|
Shargorodsky, Eugene |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
71 |
Issue:
|
4 |
Year:
|
2021 |
Pages:
|
1199-1209 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We show that for every $p\in (1,\infty )$ there exists a weight $w$ such that the Lorentz Gamma space $\Gamma _{p,w}$ is reflexive, its lower Boyd and Zippin indices are equal to zero and its upper Boyd and Zippin indices are equal to one. As a consequence, the Hardy-Littlewood maximal operator is unbounded on the constructed reflexive space $\Gamma _{p,w}$ and on its associate space $\Gamma _{p,w}'$. (English) |
Keyword:
|
Lorentz Gamma space |
Keyword:
|
reflexivity |
Keyword:
|
Boyd indices |
Keyword:
|
Zippin indices |
MSC:
|
42B25 |
MSC:
|
46E30 |
idZBL:
|
Zbl 07442485 |
idMR:
|
MR4339122 |
DOI:
|
10.21136/CMJ.2021.0355-20 |
. |
Date available:
|
2021-11-08T16:06:35Z |
Last updated:
|
2024-01-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149249 |
. |
Reference:
|
[1] Bennett, C., Sharpley, R.: Interpolation of Operators.Pure and Applied Mathematics 129. Academic Press, Boston (1988). Zbl 0647.46057, MR 0928802, 10.1016/s0079-8169(08)x6053-2 |
Reference:
|
[2] Boyd, D. W.: The Hilbert transform on rearrangement-invariant spaces.Can. J. Math. 19 (1967), 599-616. Zbl 0147.11302, MR 0212512, 10.4153/CJM-1967-053-7 |
Reference:
|
[3] Ciesielski, M.: Relationships between $K$-monotonicity and rotundity properties with application.J. Math. Anal. Appl. 465 (2018), 235-258. Zbl 1402.46010, MR 3806700, 10.1016/j.jmaa.2018.05.008 |
Reference:
|
[4] Gogatishvili, A., Kerman, R.: The rearrangement-invariant space $\Gamma_{p,\phi}$.Positivity 18 (2014), 319-345. Zbl 1311.46025, MR 3215181, 10.1007/s11117-013-0246-4 |
Reference:
|
[5] Gogatishvili, A., Pick, L.: Discretization and anti-discretization of rearrangement-invariant norms.Publ. Mat., Barc. 47 (2003), 311-358. Zbl 1066.46023, MR 2006487, 10.5565/PUBLMAT_47203_02 |
Reference:
|
[6] Kamińska, A., Maligranda, L.: On Lorentz spaces $\Gamma_{p,w}$.Isr. J. Math. 140 (2004), 285-318. Zbl 1068.46019, MR 2054849, 10.1007/BF02786637 |
Reference:
|
[7] Krejn, S. G., Petunin, Yu. I., Semenov, E. M.: Interpolation of Linear Operators.Translations of Mathematical Monographs 54. American Mathematical Society, Providence (1982). Zbl 0493.46058, MR 0649411, 10.1090/mmono/054 |
Reference:
|
[8] Maligranda, L.: Indices and interpolation.Diss. Math. 234 (1985), 1-49. Zbl 0566.46038, MR 0820076 |
Reference:
|
[9] Pick, L., Kufner, A., John, O., Fučík, S.: Function Spaces. Volume 1.De Gruyter Series in Nonlinear Analysis and Applications 14. Walter de Gruyter, Berlin (2013). Zbl 1275.46002, MR 3024912, 10.1515/9783110250428 |
Reference:
|
[10] Sawyer, E.: Boundedness of classical operators on classical Lorentz spaces.Stud. Math. 96 (1990), 145-158. Zbl 0705.42014, MR 1052631, 10.4064/sm-96-2-145-158 |
Reference:
|
[11] Zippin, M.: Interpolation of operators of weak type between rearrangement invariant function spaces.J. Funct. Anal. 7 (1971), 267-284. Zbl 0224.46038, MR 0412793, 10.1016/0022-1236(71)90035-8 |
. |