Previous |  Up |  Next

Article

Title: On two supercongruences involving Almkvist-Zudilin sequences (English)
Author: Liu, Ji-Cai
Author: Ni, He-Xia
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 4
Year: 2021
Pages: 1211-1219
Summary lang: English
.
Category: math
.
Summary: We prove two supercongruences involving Almkvist-Zudilin sequences, which were originally conjectured by Z.-H. Sun (2020). (English)
Keyword: supercongruence
Keyword: Euler number
Keyword: Almkvist-Zudilin sequence
MSC: 05A19
MSC: 11A07
MSC: 11B68
idZBL: Zbl 07442486
idMR: MR4339123
DOI: 10.21136/CMJ.2021.0384-20
.
Date available: 2021-11-08T16:07:12Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149250
.
Reference: [1] Almkvist, G., Zudilin, W.: Differential equations, mirror maps and zeta values.Mirror Symmetry AMS/IP Studies in Advanced Mathematics 38. American Mathematical Society, Providence (2006), 481-515. Zbl 1118.14043, MR 2282972, 10.1017/S0013091509000959
Reference: [2] Amdeberhan, T., Tauraso, R.: Supercongruences for the Almkvist-Zudilin numbers.Acta Arith. 173 (2016), 255-268. Zbl 1360.11004, MR 3512855, 10.4064/aa8215-2-2016
Reference: [3] Apéry, R.: Irrationalité de $\zeta(2)$ et $\zeta(3)$.Astérisque 61 (1979), 11-13 French. Zbl 0401.10049, MR 3363457
Reference: [4] Beukers, F.: Some congruences for the Apéry numbers.J. Number Theory 21 (1985), 141-155. Zbl 0571.10008, MR 0808283, 10.1016/0022-314X(85)90047-2
Reference: [5] Beukers, F.: Another congruence for the Apéry numbers.J. Number Theory 25 (1987), 201-210. Zbl 0614.10011, MR 0873877, 10.1016/0022-314X(87)90025-4
Reference: [6] Chan, H. H., Cooper, S., Sica, F.: Congruences satisfied by Apéry-like numbers.Int. J. Number Theory 6 (2010), 89-97. Zbl 1303.11009, MR 2641716, 10.1142/S1793042110002879
Reference: [7] Coster, M. J.: Supercongruences: Ph.D. Thesis.Universiteit Leiden, Leiden (1988).
Reference: [8] Gessel, I.: Some congruences for Apéry numbers.J. Number Theory 14 (1982), 362-368. Zbl 0482.10003, MR 0660381, 10.1016/0022-314X(82)90071-3
Reference: [9] Guo, V. J. W., Liu, J.-C.: Some congruences related to a congruence of Van Hamme.Integral Transforms Spec. Funct. 31 (2020), 221-231. Zbl 1434.11054, MR 4057150, 10.1080/10652469.2019.1685991
Reference: [10] Guo, V. J. W., Zeng, J.: Proof of some conjectures of Z.-W. Sun on congruences for Apéry polynomials.J. Number Theory 132 (2012), 1731-1740. Zbl 1300.11005, MR 2922341, 10.1016/j.jnt.2012.02.004
Reference: [11] Lehmer, E.: On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson.Ann. Math. (2) 39 (1938), 350-360. Zbl 0019.00505, MR 1503412, 10.2307/1968791
Reference: [12] Liu, J.-C.: Proof of some divisibility results on sums involving binomial coefficients.J. Number Theory 180 (2017), 566-572. Zbl 1421.11006, MR 3679814, 10.1016/j.jnt.2017.05.006
Reference: [13] Liu, J.-C.: A generalized supercongruence of Kimoto and Wakayama.J. Math. Anal. Appl. 467 (2018), 15-25. Zbl 1406.11006, MR 3834791, 10.1016/j.jmaa.2018.05.031
Reference: [14] Liu, J.-C.: On Van Hamme's (A.2) and (H.2) supercongruences.J. Math. Anal. Appl. 471 (2019), 613-622. Zbl 1423.11015, MR 3906342, 10.1016/j.jmaa.2018.10.095
Reference: [15] Liu, J.-C.: Semi-automated proof of supercongruences on partial sums of hypergeometric series.J. Symb. Comput. 93 (2019), 221-229. Zbl 1418.68248, MR 3913573, 10.1016/j.jsc.2018.06.004
Reference: [16] Liu, J.-C.: On a sum of Apéry-like numbers arising from spectral zeta functions.Colloq. Math. 160 (2020), 1-6. Zbl 07178814, MR 4071810, 10.4064/cm7860-3-2019
Reference: [17] Liu, J.-C.: On two congruences involving Franel numbers.Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114 (2020), Article ID 201, 10 pages. Zbl 1444.11010, MR 4151769, 10.1007/s13398-020-00935-y
Reference: [18] Liu, J.-C.: Some supercongruences arising from symbolic summation.J. Math. Anal. Appl. 488 (2020), Article ID 124062, 10 pages. Zbl 07186505, MR 4079597, 10.1016/j.jmaa.2020.124062
Reference: [19] Liu, J.-C.: A supercongruence relation among Apéry-like numbers.Colloq. Math. 163 (2021), 333-340. Zbl 07301035, MR 4173185, 10.4064/cm8108-4-2020
Reference: [20] Liu, J.-C., Wang, C.: Congruences for the $(p-1)$th Apéry number.Bull. Aust. Math. Soc. 99 (2019), 362-368. Zbl 07062625, MR 3952469, 10.1017/S0004972718001156
Reference: [21] Mortenson, E.: Supercongruences between truncated $_2F_1$ hypergeometric functions and their Gaussian analogs.Trans. Am. Math. Soc. 355 (2003), 987-1007. Zbl 1074.11044, MR 1938742, 10.1090/S0002-9947-02-03172-0
Reference: [22] Osburn, R., Sahu, B.: Supercongruences for Apéry-like numbers.Adv. Appl. Math. 47 (2011), 631-638. Zbl 1244.11006, MR 2822206, 10.1016/j.aam.2011.03.002
Reference: [23] Osburn, R., Sahu, B., Straub, A.: Supercongruences for sporadic sequences.Proc. Edinb. Math. Soc., II. Ser. 59 (2016), 503-518. Zbl 1411.11005, MR 3509244, 10.1017/S0013091515000255
Reference: [24] Osburn, R., Schneider, C.: Gaussian hypergeometric series and supercongruences.Math. Comput. 78 (2009), 275-292. Zbl 1209.11049, MR 2448707, 10.1090/S0025-5718-08-02118-2
Reference: [25] Pan, H.: On divisibility of sums of Apéry polynomials.J. Number Theory 143 (2014), 214-223. Zbl 1353.11004, MR 3227343, 10.1016/j.jnt.2014.03.006
Reference: [26] Schneider, C.: Symbolic summation assists combinatorics.Sémin. Lothar. Comb. 56 (2007), B56b, 36 pages. Zbl 1188.05001, MR 2317679
Reference: [27] Sun, Z.-H.: New congruences involving Apéry-like numbers.Available at https://arxiv.org/abs/2004.07172 (2020), 24 pages.
Reference: [28] Sun, Z.-W.: Super congruences and Euler numbers.Sci. China, Math. 54 (2011), 2509-2535. Zbl 1256.11011, MR 2861289, 10.1007/s11425-011-4302-x
Reference: [29] Sun, Z.-W.: On sums of Apéry polynomials and related congruences.J. Number Theory 132 (2012), 2673-2699. Zbl 1275.11038, MR 2954998, 10.1016/j.jnt.2012.05.014
Reference: [30] Sun, Z.-W.: A new series for $\pi^3$ and related congruences.Int. J. Math. 26 (2015), Article ID 1550055, 23 pages. Zbl 1321.11023, MR 3372182, 10.1142/S0129167X1550055X
Reference: [31] Wang, C.: Symbolic summation methods and hypergeometric supercongruences.J. Math. Anal. Appl. 488 (2020), Article ID 124068, 11 pages. Zbl 1448.11053, MR 4079598, 10.1016/j.jmaa.2020.124068
Reference: [32] Wolstenholme, J.: On certain properties of prime numbers.Quart. J. Pure Appl. Math. 5 (1862), 35-39.
Reference: [33] Zagier, D.: Integral solutions of Apéry-like recurrence equations.Groups and Symmetries: From Neolithic Scots to John McKay CRM Proceedings and Lecture Notes 47. American Mathematical Society, Providence (2009), 349-366. Zbl 1244.11042, MR 2500571, 10.1090/crmp/047
.

Files

Files Size Format View
CzechMathJ_71-2021-4_23.pdf 218.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo