Previous |  Up |  Next

Article

Title: Finite groups in which every self-centralizing subgroup is nilpotent or subnormal or a TI-subgroup (English)
Author: Shi, Jiangtao
Author: Li, Na
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 4
Year: 2021
Pages: 1229-1233
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a finite group. We prove that if every self-centralizing subgroup of $G$ is nilpotent or subnormal or a TI-subgroup, then every subgroup of $G$ is nilpotent or subnormal. Moreover, $G$ has either a normal Sylow $p$-subgroup or a normal $p$-complement for each prime divisor $p$ of $|G|$. (English)
Keyword: self-centralizing
Keyword: nilpotent
Keyword: TI-subgroup
Keyword: subnormal
Keyword: $p$-complement
MSC: 20D10
idZBL: Zbl 07442488
idMR: MR4339125
DOI: 10.21136/CMJ.2021.0512-20
.
Date available: 2021-11-08T16:07:59Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149252
.
Reference: [1] Robinson, D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics 80. Springer, New York (1996). Zbl 0836.20001, MR 1357169, 10.1007/978-1-4419-8594-1
Reference: [2] Shi, J.: Finite groups in which every non-abelian subgroup is a TI-subgroup or a subnormal subgroup.J. Algebra Appl. 18 (2019), Article ID 1950159, 4 pages. Zbl 07096474, MR 3977820, 10.1142/S0219498819501597
Reference: [3] Shi, J., Zhang, C.: Finite groups in which every subgroup is a subnormal subgroup or a TI-subgroup.Arch. Math. 101 (2013), 101-104. Zbl 1277.20021, MR 3089764, 10.1007/s00013-013-0545-9
Reference: [4] Shi, J., Zhang, C.: A note on TI-subgroups of a finite group.Algebra Colloq. 21 (2014), 343-346. Zbl 1291.20018, MR 3192353, 10.1142/S1005386714000297
Reference: [5] Sun, Y., Lu, J., Meng, W.: Finite groups whose non-abelian self-centralizing subgroups are TI-subgroups or subnormal subgroups.J. Algebra Appl. 20 (2021), Article ID 2150040, 5 pages. Zbl 07347720, MR 4242212, 10.1142/S0219498821500407
.

Files

Files Size Format View
CzechMathJ_71-2021-4_25.pdf 163.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo