Title:
|
Projectively equivariant quantization and symbol on supercircle $S^{1|3}$ (English) |
Author:
|
Bichr, Taher |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
71 |
Issue:
|
4 |
Year:
|
2021 |
Pages:
|
1235-1248 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\mathcal {D}_{\lambda ,\mu } $ be the space of linear differential operators on weighted densities from $\mathcal {F}_{\lambda }$ to $\mathcal {F}_{\mu }$ as module over the orthosymplectic Lie superalgebra $\mathfrak {osp}(3|2)$, where $\mathcal {F}_{\lambda } $, $ł\in \nobreak \mathbb {C}$ is the space of tensor densities of degree $\lambda $ on the supercircle $S^{1|3}$. We prove the existence and uniqueness of projectively equivariant quantization map from the space of symbols to the space of differential operators. An explicite expression of this map is also given.\looseness -1 (English) |
Keyword:
|
differential operator |
Keyword:
|
density |
Keyword:
|
equivariant quantization and orthosymplectic algebra |
MSC:
|
17B10 |
MSC:
|
17B66 |
MSC:
|
53D10 |
idZBL:
|
Zbl 07442489 |
idMR:
|
MR4339126 |
DOI:
|
10.21136/CMJ.2021.0149-19 |
. |
Date available:
|
2021-11-08T16:08:29Z |
Last updated:
|
2024-01-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149253 |
. |
Reference:
|
[1] Duval, C., Lecomte, P., Ovsienko, V.: Conformally equivariant quantization: Existence and uniqueness.Ann. Inst. Fourier 49 (1999), 1999-2029. Zbl 0932.53048, MR 1738073, 10.5802/aif.1744 |
Reference:
|
[2] Grozman, P., Leites, D., Shchepochkina, I.: Invariant operators on supermanifolds and standard models.Multiple Facets of Quantization and Supersymmetry World Scientific, River Edge (2002), 508-555. Zbl 1037.58003, MR 1964915, 10.1142/9789812777065_0031 |
Reference:
|
[3] Lecomte, P. B. A.: Classification projective des espaces d'opérateurs différentiels agissant sur les densités.C. R. Acad. Sci. Paris., Sér. I, Math. 328 (1999), 287-290 French. Zbl 1017.17022, MR 1675939, 10.1016/S0764-4442(99)80211-0 |
Reference:
|
[4] Lecomte, P. B. A.: Towards projectively equivariant quantization.Prog. Theor. Phys., Suppl. 144 (2001), 125-132. Zbl 1012.53069, MR 2023850, 10.1143/PTPS.144.125 |
Reference:
|
[5] Lecomte, P. B. A., Ovsienko, V. Y.: Projectively equivariant symbol calculus.Lett. Math. Phys. 49 (1999), 173-196. Zbl 0989.17015, MR 1743456, 10.1023/A:1007662702470 |
Reference:
|
[6] Leites, D. A., Kochetkov, Y., Weintrob, A.: New invariant differential operators on supermanifolds and pseudo-(co)homology.General Topology and Applications Lecture Notes in Pure and Applied Mathematics 134. Marcel Dekker, New York (1991), 217-238. Zbl 0773.58004, MR 1142806 |
Reference:
|
[7] Leuther, T., Mathonet, P., Radoux, F.: One $osp(p+1,q+1|2r)$-equivariant quantizations.J. Geom. Phys. 62 (2012), 87-99. Zbl 1238.17016, MR 2854196, 10.1016/j.geomphys.2011.09.003 |
Reference:
|
[8] Mathonet, P., Radoux, F.: Projectively equivariant quantizations over the superspace $R^{p|q}$.Lett. Math. Phys. 98 (2011), 311-331. Zbl 1279.53083, MR 2852986, 10.1007/s11005-011-0474-0 |
Reference:
|
[9] Mellouli, N.: Projectively equivariant quantization and symbol calculus in dimension $1|2$.Available at https://arxiv.org/abs/1106.5246v1 (2011), 9 pages. |
Reference:
|
[10] Ovsienko, V. Y., Ovsienko, O. D., Chekanov, Y. V.: Classification of contact-projective structures on the supercircles.Russ. Math. Surv. 44 (1989), 212-213. Zbl 0727.58006, MR 1024056, 10.1070/RM1989v044n03ABEH002135 |
Reference:
|
[11] Shchepochkina, I.: How to realize a Lie algebra by vector fields.Theor. Math. Phys. 147 (2006), 821-838. Zbl 1177.17015, MR 2254724, 10.1007/s11232-006-0078-5 |
. |