Previous |  Up |  Next

Article

Title: New criteria for exponential stability of linear neutral differential systems with distributed delays (English)
Author: Ngoc, Pham Huu Anh
Author: Tran, Thai Bao
Author: Huy, Nguyen Dinh
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 57
Issue: 5
Year: 2021
Pages: 776-784
Summary lang: English
.
Category: math
.
Summary: We present new explicit criteria for exponential stability of general linear neutral time-varying differential systems. Particularly, our results give extensions of the well-known stability criteria reported in [3,11] to linear neutral time-varying differential systems with distributed delays. (English)
Keyword: linear neutral differential equation
Keyword: exponential stability
Keyword: time-varying systems
MSC: 34K20
idZBL: Zbl 07478639
idMR: MR4363236
DOI: 10.14736/kyb-2021-5-0776
.
Date available: 2022-01-05T07:54:22Z
Last updated: 2022-02-24
Stable URL: http://hdl.handle.net/10338.dmlcz/149303
.
Reference: [1] Agarwal, R. P., Grace, S. R.: Asymptotic stability of certain neutral differential equations..Math.Computer Modell. 31 (2000), 9-15.
Reference: [2] Alexandrova, I. V., Zhabko, A. P.: Stability of neutral type delay systems: A joint Lyapunov-Krasovskii and Razumikhin approach..Automatica 106 (2019), 83-90.
Reference: [3] Bellen, A., Guglielmi, N., Ruehli, A. E.: Methods for linear systems of circuit delay differential equations of neutral type..IEEE Trans. Circuits Systems I Fundamental Theory Appl. 46 (1999), 212-215.
Reference: [4] Duda, J: A Lyapunov functional for a neutral system with a time-varying delay..Bull. Polish Acad. Sci.: Techn. Sci. 61 (2013), 911-918.
Reference: [5] Desoer, CA., Vidyasagar, M.: Feedback Synthesis: Input-Output Properties..SIAM, Philadelphia 2009.
Reference: [6] Fridman, E.: New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems..Systems Control Lett. 43 (2001), 309-319. Zbl 0974.93028,
Reference: [7] Gil, M.: Stability of Neutral Functional Differential Equations..Atlantis Press, Amsterdam, Paris, Bejing 2014.
Reference: [8] Hale, J., Lunel, S.: Introduction to Functional Differential Equations..Springer-Verlag, Berlin 1993. Zbl 0787.34002
Reference: [9] Hu, G. D., Hu, G. D.: Simple criteria for stability of neutral systems with multiple delays..Int. J. Systems Science 28 (1997), 1325-1328.
Reference: [10] Kolmanovskii, V., Mishkis, A.: Introduction to the Theory and Applications of Functional Differential Equations: Mathematics and its Applications..Kluwer Academic Publisher, Dordreht 1999.
Reference: [11] Li, L.: Stability of linear neutral delay-differential systems..Bull. Austral. Math. Soc. 38 (1988), 339-344.
Reference: [12] Li, Z., Lam, J., Wang, Y.: Stability analysis of linear stochastic neutral-type time-delay systems with two delays..Automatica 91 (2018), 179-189.
Reference: [13] Ngoc, P. H. A., Trinh, H.: Novel criteria for exponential stability of linear neutral time-varying differential systems..IEEE Trans. Automat. Control 61 (2016), 1590-1594.
Reference: [14] Verriest, E., Niculescu, S.: Delay-independent stability of linear neutral systems: A Riccati equation approach..In: Stability and Control of Time-Delay Systems (L. Dugard and E. I. Verriest, eds.), Springer-Verlag, London 1998, pp. 92-100.
Reference: [15] Zhao, N., Zhang, X., Xue, Y., Shi, P.: Necessary conditions for exponential stability of linear neutral type systems with multiple time delays..J. Franklin Inst. 355 (2018), 458-473.
.

Files

Files Size Format View
Kybernetika_57-2021-5_3.pdf 404.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo