Previous |  Up |  Next

Article

Title: Global output feedback stabilization for nonlinear fractional order time delay systems (English)
Author: Benali, Hanen
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 57
Issue: 5
Year: 2021
Pages: 785-800
Summary lang: English
.
Category: math
.
Summary: This paper investigates the problem of global stabilization by state and output-feedback for a family of for nonlinear Riemann-Liouville and Caputo fractional order time delay systems written in triangular form satisfying linear growth conditions. By constructing a appropriate Lyapunov-Krasovskii functional, global asymptotic stability of the closed-loop systems is achieved. Moreover, sufficient conditions for the stability, for the particular class of fractional order time-delay system are obtained. Finally, simulation results dealing with typical bioreactor example, are given to illustrate that the proposed design procedures are very efficient and simple. (English)
Keyword: Riemann–Liouville fractional
Keyword: nonlinear time delay system
Keyword: observer design
Keyword: asymptotical stability
Keyword: Lyapunov functional
MSC: 93C10
MSC: 93D15
MSC: 93D20
idZBL: Zbl 07478640
idMR: MR4363237
DOI: 10.14736/kyb-2021-5-0785
.
Date available: 2022-01-05T07:55:39Z
Last updated: 2022-02-24
Stable URL: http://hdl.handle.net/10338.dmlcz/149304
.
Reference: [1] Aguila, C. N., Duarte, M. A., Gallegos, J A.: Lyapunov functions for fractional order systems..Comm. Nonlinear Sci. Numer. Simul. 19 (2014), 2951-2957.
Reference: [2] Agarwal, R., Hristova, S., O'Regan, D.: Lyapunov functions and stability of caputo fractional differential equations with delays..Diff. Equations Dynam. Systems (2018).
Reference: [3] Alzabut, J., Tyagi, S., Abbas, S.: Discrete fractional-order BAM neural networks with leakage delay: existence and stability results..Asian J. Control 22(1) (2020), 143-155.
Reference: [4] Baleanu, D., Mustafa, O. G.: On the global existence of solutions to a class of fractional differential equations..Comput. Math. Appl. 59 (2010), 1835-1841.
Reference: [5] Baleanu, D., Ranjbarn, A., Sadatir, S. J., Delavari, H., Abdeljawad, T., Gejji, V.: Lyapunov-Krasovskii stability theorem for fractional system with delay..Romanian J. Phys. 56 (2011), 5 - 6, 636-643.
Reference: [6] Benabdallah, A.: A separation principle for the stabilization of a class of time delay nonlinear systems..Kybernetika 51 (2015), 99-111.
Reference: [7] Benabdallah, A., Echi, N.: Global exponential stabilisation of a class of nonlinear time-delay systems..Int. J. Systems Sci. 47 (2016), 3857-3863.
Reference: [8] Chen, L., He, Y., Wu, R., Chai, Y., Yin, L.: Robust finite time stability of fractional-order linear delayed systems with nonlinear perturbations..Int. J. Control Automat. Systems 12 (2014), 697-702.
Reference: [9] Sen, M. De la: Robust stability of caputo linear fractional dynamic systems with time delays through fixed point theory..Fixed Point Theory Appl. 1 (2011), 867932.
Reference: [10] Echi, N.: Observer design and practical stability of nonlinear systems under unknown time-delay..Asian J. Control 23(2) (2019), 685-696.
Reference: [11] Echi, N., Basdouri, I., Benali, H.: A separation principle for the stabilization of a class of fractional order time delay nonlinear systems..Bull. Australian Math. Soc. 99(1) (2019), 161-173. 10.1017/S0004972718000837
Reference: [12] Echi, N., Benabdallah, A.: Delay-dependent stabilization of a class of time-delay nonlinear systems: LMI approach..Advances Difference Equations (2017), 271.
Reference: [13] Echi, N., Benabdallah, A.: Observer based control for strong practical stabilization of a class of uncertain time delay systems..Kybernetika 55 (2019), 6, 1016-1033.
Reference: [14] Echi, N., Ghanmi, B.: Global rational stabilization of a class of nonlinear time-delay systems..Archives Control Sci. 29(2) (2019), 259-278.
Reference: [15] Engheta, N.: On fractional calculus and fractional multipoles in electromagnetism..IEEE Trans. Antennas Propagat. 44 (1996), 4, 554-566.
Reference: [16] Iswarya, M., Raja, R., Cao, J., Niezabitowski, M., Alzabut, J., Maharajan, C.: New results on exponential input-to-state stability analysis of memristor based complex-valued inertial neural networks with proportional and distributed delays..Math. Computers Simul.(2021).
Reference: [17] Khalil, H. K.: Nonlinear Systems. Third edition..Macmillan, New York 2002.
Reference: [18] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Application of Fractional Differential Equations..Elsevier, New York 2006.
Reference: [19] Laskin, N.: Fractional market dynamics..Physica A: Statist. Mechanics Appl. 287 (2000), 3-4, 482-492.
Reference: [20] Li, Y., Chen, Y. Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems..Automatica, 45 (2009), 1965-1969. Zbl 1185.93062,
Reference: [21] Liu, S., Wu, X., Zhou, X., W.Jiang: Asymptotical stability of Riemann-Liouville fractional nonlinear systems..Nonlinear Dyn. 86 (2016), 65-71.
Reference: [22] Liu, S., Zhou, X., Li, X., Jiang, W.: Asymptotical stability of Riemann-Liouville fractional singular systems with multiple time-varying delays..Appl. Math. Lett. 65 (2017), 32-39.
Reference: [23] Lu, J. G., Chen, G. R.: Robust stability and stabilization of fractional-order interval systems: An LMI approach..IEEE Trans. Automat. Control 54 (2009), 1294-1299.
Reference: [24] I.Podlubny: Fractional Diferential Equations..Academic Press, San Diego 1999.
Reference: [25] Pratap, A., Raja, R., Alzabut, J., Dianavinnarasi, J., Cao, J., Rajchakit, G.: Finite-time Mittag-Leer stability of fractional-order quaternion-valued memristive neural networks with impulses.. Neural Proc. Lett. 51 (2020), 1485–1526. DOI:10.1007/s11063-019-10154-1
Reference: [26] Rehman, M., Alzabut, J., Anwar, M. F.: Stability analysis of linear feedback systems in control..Symmetry 12(9) (2020), 1518.
Reference: [27] Sadati, S. J. D., Baleanu, D., Ranjbar, A., Ghaderi, R., Abdeljawad, T.: Mittag-Leffler stability theorem for fractional nonlinear systems with delay..Abstract Appl. Anal. 7 (2010), 1-7.
Reference: [28] Sun, H., Abdelwahad, A., Onaral, B.: Linear approximation of transfer function with a pole of fractional order..IEEE Trans. Automat. Control 1 29 (1984), 5, 441-444.
Reference: [29] Yan, X., Song, X., Wang, X.: Global output-feedback stabilization for nonlinear time-delay systems with unknown control coefficients..Int. J. Control Automat. Systems 16 (2018), 1550-1557.
Reference: [30] Yan, X. H., Liu, Y. G.: New results on global outputfeedback stabilization for nonlinear systems with unknown growth rate..J. Control Theory Appl. 11 (2013), 3, 401-408.
Reference: [31] Zhang, X.: Some results of linear fractional order time-delay system..Appl. Math. Compt. 197 (2008), 407-411.
Reference: [32] Zhang, X., Cheng, Z.: Global stabilization of a class of time-delay nonlinear systems..Int. J. Systems Sci. 36 (2005), 8, 461-468.
.

Files

Files Size Format View
Kybernetika_57-2021-5_4.pdf 448.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo