Previous |  Up |  Next

Article

Title: Empirical analysis of current status data for additive hazards model with auxiliary covariates (English)
Author: Zhang, Jianling
Author: Yang, Mei
Author: Zhou, Xiuqing
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 57
Issue: 5
Year: 2021
Pages: 801-818
Summary lang: English
.
Category: math
.
Summary: In practice, it often occurs that some covariates of interest are not measured because of various reasons, but there may exist some auxiliary information available. In this case, an issue of interest is how to make use of the available auxiliary information for statistical analysis. This paper discusses statistical inference problems in the context of current status data arising from an additive hazards model with auxiliary covariates. An empirical log-likelihood ratio statistic for the regression parameter vector is defined and its limiting distribution is shown to be a standard chi-squared distribution. A profile empirical log-likelihood ratio statistic for a sub-vector of the parameters and its asymptotic distribution are also studied. To assess the finite sample performance of the proposed methods, simulation studies are implemented and simulation results show that the methods work well. (English)
Keyword: current status data
Keyword: auxiliary covariates
Keyword: additive hazards model
Keyword: empirical likelihood
MSC: 62E20
MSC: 62N01
idZBL: Zbl 07478641
idMR: MR4363238
DOI: 10.14736/kyb-2021-5-0801
.
Date available: 2022-01-05T07:56:52Z
Last updated: 2022-02-24
Stable URL: http://hdl.handle.net/10338.dmlcz/149305
.
Reference: [1] Chen, Y., Feng, Y., Sun, J.: Regression analysis of multivariate current status data with auxiliary covariates under the additive hazards model..Comput. Statist. Data Anal. 87 (2015), 34-45.
Reference: [2] Chen, L., Sun, J.: A multiple imputation approach to the analysis of current status data with the additive hazards model..Commun. Stat. Theor. Meth. 38 (2009), 1009-1018. 10.1080/03610920802361407
Reference: [3] Feng, Y., Ma, L., Sun, J.: Additive hazards regression with auxiliary covariate for case I interval censored data..Scand. J. Stat. 42 (2015), 118-136.
Reference: [4] Huang, J.: Efficient estimation for the proportional hazards model with interval censoring..Ann. Statist. 24 (1996), 540-568. 10.1214/aos/1032894452
Reference: [5] Jewell, N., Laan, M. van der: Generalizations of current status data with applications..Lifetime Data Anal. 1 (1995), 101-110.
Reference: [6] Lin, D., Oakes, D., Ying, Z.: Additive hazards regression with current status data..Biometrika 85 (1998), 289-298.
Reference: [7] Lin, D., Ying, Z.: Semiparametric analysis of the additive risk model..Biometrika 81 (1994), 61-71. Zbl 0796.62099,
Reference: [8] Lin, D., Ying, Z.: Semiparametric and nonparametric regression analysis of longitudinal data..J. Amer. Statist. Assoc. 96 (2001), 453, 103-126.
Reference: [9] Liu, W., Lu, X., Xie, C.: Empirical likelihood for the additive hazards model with current status data..Comm. Statist. Simulation Comput. 45 (2016), 8, 2720-2732.
Reference: [10] Lu, X., Song, Peter X. K.: On efficient estimation in additive hazards regression with current status data..Comput. Statist. Data Anal. 56 (2012), 6, 2051-2058.
Reference: [11] Martinussen, T., Scheike, T. H.: Efficient estimation in additive hazards regression with current status data..Biometrika 89 (2002), 649-658.
Reference: [12] McKeague, I., Sasieni, P.: A partly parametric additive risk model..Biometrika 81 (1994), 501-514.
Reference: [13] Owen, A. B.: Empirical Likelihood..Chapman and Hall, 2001.
Reference: [14] Owen, A. B.: Empirical likelihood and confidence regions..Ann. Statist. 18 (1990), 90-120.
Reference: [15] Owen, A. B.: Empirical likelihood ratio confidence intervals for a single functional..Biometrika 75 (1988), 237-249.
Reference: [16] Prentice, R.: Covariate measurement errors and parameter estimation in a failure time regression model..Biometrika 69 (1982), 331-342.
Reference: [17] Qin, J., Lawless, J.: Empirical likelihood and general estimating equations..Ann. Statist. 22 (1994), 300-325.
Reference: [18] Rossini, J., Tsiatis, A. A.: A semiparametric proportional odds regression model for the analysis of current status data..J. Am. Stat. Assoc. 91 (1996), 713-721. 10.1080/01621459.1996.10476939
Reference: [19] Sun, J.: The Statistical Analysis of Interval-censored Failure Time Data..Springer, New York 2006.
Reference: [20] Wang, N., Wang, L., McMahan, C.: Regression analysis of bivariate current status data under the gamma-frailty proportional hazards model using the EM algorithm..Comput. Stat. Data Anal. 83 (2015), 140-150.
Reference: [21] Zhang, Z., Sun, J., Sun, L.: Statistical analysis of current status data with informative observation times..Stat. Med. 24 (2005), 1399-1407.
Reference: [22] Zhang, Z., Sun, L., Zhao, X., Sun, J.: Regression analysis of interval-censored failure time data with linear transformation models..Canad. J. Statist. 33 (2005), 61-70.
Reference: [23] Zhang, Z., Zhao, Y.: Empirical likelihood for linear transformation models with interval-censored failure time data..J. Multivariate Anal. 116 (2013), 398-409.
Reference: [24] Zhao, Y., Hsu, Y. S.: Semiparametric analysis for additive risk model via empirical likelihood..Commun. Stat.-Simul. Comput. 34 (2005), 135-143.
Reference: [25] Zhu, L., Tong, X., Sun, J.: A transformation approach for the analysis of interval-censored failure time data..Lifetime Data Anal. 14 (2008), 167-178.
Reference: [26] Zhou, M.: Empirical likelihood analysis of the rank estimator for the censored accelerated failure time model..Biometrika 92 (2005), 492-498.
.

Files

Files Size Format View
Kybernetika_57-2021-5_5.pdf 447.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo