Previous |  Up |  Next

Article

Title: Division schemes under uncertainty of claims (English)
Author: Li, Xianghui
Author: Li, Yang
Author: Zheng, Wei
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 57
Issue: 5
Year: 2021
Pages: 840-855
Summary lang: English
.
Category: math
.
Summary: In some economic or social division problems, we may encounter uncertainty of claims, that is, a certain amount of estate has to be divided among some claimants who have individual claims on the estate, and the corresponding claim of each claimant can vary within a closed interval or fuzzy interval. In this paper, we classify the division problems under uncertainty of claims into three subclasses and present several division schemes from the perspective of axiomatizations, which are consistent with the classical bankruptcy rules in particular cases. When claims of claimants have fuzzy interval uncertainty, we settle such type of division problems by turning them into division problems under interval uncertainty. (English)
Keyword: division scheme
Keyword: bankruptcy
Keyword: interval
Keyword: fuzzy
MSC: 03B52
MSC: 91A12
idZBL: Zbl 07478643
idMR: MR4363240
DOI: 10.14736/kyb-2021-5-0840
.
Date available: 2022-01-05T07:59:24Z
Last updated: 2022-02-24
Stable URL: http://hdl.handle.net/10338.dmlcz/149307
.
Reference: [1] Aumann, R. J., Maschler, M.: Game theoretic analysis of a bankruptcy problem from the Talmud..J. Econom. Theory 36 (1982), 195-213.
Reference: [2] games, Cooperative interval: A survey..Cent. Europ. J. Oper. Res. 18 (2010), 397-411.
Reference: [3] Branzei, R., Dimitrov, D., Pickl, S., Tijs, S.: How to cope with division problems under interval uncertainty of claims?.Int. J. Uncertain. Fuzz. 12 (2004), 191-200.
Reference: [4] Curiel, I. J., Maschler, M., Tijs, S. H.: Bankruptcy games..Z. Oper. Res. 31 (1987), A143-A159.
Reference: [5] Driessen, T.: Cooperative Games, Solutions and Applications..Kluwer Academic Publishers, 1988.
Reference: [6] Elishakoff, I.: Resolution of two millennia-old Talmudic mathematical conundrums..BeOr HaTorah 21 (2012), 61-76.
Reference: [7] Elishakoff, I., Bégin-Drolet, A.: Talmudic bankruptcy problem: special and general solutions..Scientiae Mathematicae Japonicae 69 (2009), 387-403.
Reference: [8] Habis, H., Herings, P. J. J.: Stochastic bankruptcy games..Int. J. Game Theory 42 (2013), 973-988.
Reference: [9] Mallozzi, L., Scalzo, V., Tijs, S.: Fuzzy interval cooperative games..Fuzzy Set Syst. 165 (2011), 1, 98-105.
Reference: [10] Moreno-Ternero, J. D., Villar, A.: The Talmud rule and the securement of agents' awards..Math. Soc. Sci. 47 (2004), 245-257.
Reference: [11] O'Neill, B.: A problem of rights arbitration from the Talmud..Math. Soc. Sci. 2 (1982), 345-371. 10.1016/0165-4896(82)90029-4
Reference: [12] Pulido, M., Sánchez-Soriano, J., Llorca, N.: Game theory techniques for university management: an extended bankruptcy model..Ann. Oper. Res. 109 (2002), 129-142.
Reference: [13] Schmeidler, D.: The nucleolus of a characeristic function..SIAM J. Appl. Math. 17 (1969), 1163-1170.
Reference: [14] Zhao, W. J., Liu, J. C.: Interval-valued fuzzy cooperative games based on the least square excess and its application to the profit allocation of the road freight coalition..Symmetry 10 (2018), 709.
Reference: [15] Tijs, S.: Bounds for the core of a game and the t-value..In O. Moeschlin, & D. Pallaschke (Eds.), Game Theory Math. Econom. (1981), pp. 123-132. North-Holland Publishing Company.
Reference: [16] Yager, R. R., Kreinovich, V.: Fair division under interval uncertainty..Int. J. Uncert. Fuzz. 8 (2000), 611-618. 10.1142/S0218488500000423
Reference: [17] Yu, X., Zhang, Q.: Core for game with fuzzy generalized triangular payoff value..Int. J. Uncert. Fuzz. 27 (2019), 789-813.
.

Files

Files Size Format View
Kybernetika_57-2021-5_7.pdf 447.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo