Previous |  Up |  Next

Article

Title: On Balancing and Lucas-balancing Quaternions (English)
Author: Patel, Bijan Kumar
Author: Ray, Prasanta Kumar
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 29
Issue: 3
Year: 2021
Pages: 325-341
Summary lang: English
.
Category: math
.
Summary: The aim of this article is to investigate two new classes of quaternions, namely, balancing and Lucas-balancing quaternions that are based on balancing and Lucas-balancing numbers, respectively. Further, some identities including Binet's formulas, summation formulas, Catalan's identity, etc. concerning these quaternions are also established. (English)
Keyword: Recurrence relations
Keyword: Balancing numbers
Keyword: Lucas-balancing numbers
Keyword: Quaternions
MSC: 11B37
MSC: 11B39
MSC: 20G20
idZBL: Zbl 07484371
idMR: MR4355416
.
Date available: 2022-01-10T09:57:24Z
Last updated: 2022-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/149319
.
Reference: [1] Akyig̃it, M., Kösal, H.H., Tosun, M.: Fibonacci generalized quaternions.Advances in Applied Clifford Algebras, 24, 3, 2014, 631-641, Springer, MR 3261614, 10.1007/s00006-014-0458-0
Reference: [2] Behera, A., Panda, G.K.: On the square roots of triangular numbers.Fibonacci Quarterly, 37, 1999, 98-105, THE FIBONACCI ASSOCIATION,
Reference: [3] Catarino, P., Campos, H., Vasco, P.: On some identities for balancing and cobalancing numbers.Annales Mathematicae et Informaticae, 45, 2015, 11-14, Tibor Tómács, MR 3438809
Reference: [4] Catarino, P.: The modified Pell and the modified $k$-Pell quaternions and octonions.Advances in Applied Clifford Algebras, 26, 2, 2016, 577-590, Springer, MR 3502047, 10.1007/s00006-015-0611-4
Reference: [5] Çimen, C.B., İpek, A.: On Pell quaternions and Pell-Lucas quaternions.Advances in Applied Clifford Algebras, 26, 1, 2016, 39-51, Springer, MR 3459988, 10.1007/s00006-015-0571-8
Reference: [6] Davala, R.K., Panda, G.K.: On sum and ratio formulas for balancing numbers.Journal of Indian Mathematical Society, 82, 1--2, 2015, 23-32, MR 3290017
Reference: [7] Halici, S.: On fibonacci quaternions.Advances in Applied Clifford Algebras, 22, 2, 2012, 321-327, Springer, MR 2930698, 10.1007/s00006-011-0317-1
Reference: [8] Horadam, A.F.: Complex Fibonacci numbers and Fibonacci quaternions.The American Mathematical Monthly, 70, 3, 1963, 289-291, JSTOR, 10.2307/2313129
Reference: [9] Horadam, A.F.: Quaternion recurrence relations.Ulam Quarterly, 2, 2, 1993, 23-33,
Reference: [10] Iyer, M.R.: A note on Fibonacci quaternions.Fibonacci Quarterly, 7, 3, 1969, 225-229,
Reference: [11] Panda, G.K., Ray, P.K.: Some links of balancing and cobalancing numbers with Pell and associated Pell numbers.Bulletin of the Institute of Mathematics, Academia Sinica (New Series), 6, 1, 2011, 41-72, Citeseer, MR 2850087
Reference: [12] Ray, P.K.: Curious congruences for balancing numbers.International Journal of Contemporary Mathematical Sciences, 7, 18, 2012, 881-889, MR 2905157
Reference: [13] Ray, P.K.: Balancing and Lucas-balancing sums by matrix methods.Mathematical Reports, 17, 2, 2015, 225-233, MR 3375730
Reference: [14] Szynal-Liana, A., Włoch, I.: The Pell quaternions and the Pell octonions.Advances in Applied Clifford Algebras, 26, 1, 2016, 435-440, Springer, MR 3460009, 10.1007/s00006-015-0570-9
.

Files

Files Size Format View
ActaOstrav_29-2021-3_1.pdf 313.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo