Previous |  Up |  Next

Article

Title: Symmetric identity for polynomial sequences satisfying $A_{n+1}^\prime (x)=(n+1)A_n(x)$ (English)
Author: Bencherif, Farid
Author: Boumahdi, Rachid
Author: Garici, Tarek
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 29
Issue: 3
Year: 2021
Pages: 343-355
Summary lang: English
.
Category: math
.
Summary: Using umbral calculus, we establish a symmetric identity for any sequence of polynomials satisfying $A_{n+1}^\prime (x) =(n+1)A_{n}(x)$ with $A_0(x)$ a constant polynomial. This identity allows us to obtain in a simple way some known relations involving Apostol-Bernoulli polynomials, Apostol\HH Euler polynomials and generalized Bernoulli polynomials attached to a primitive Dirichlet character. (English)
Keyword: Appell sequence
Keyword: Apostol-Bernoulli polynomial
Keyword: Apostol-Euler polynomial
Keyword: generalized Bernoulli polynomial
Keyword: primitive Dirichlet character.
MSC: 05A19
MSC: 05A40
MSC: 11B68
idZBL: Zbl 1480.05012
idMR: MR4355417
.
Date available: 2022-01-10T09:58:44Z
Last updated: 2022-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/149321
.
Reference: [1] Agoh, T.: Shortened recurrence relations for generalized Bernoulli numbers and polynomials.Journal of Number Theory, 176, 2017, 149-173, Elsevier, MR 3622124, 10.1016/j.jnt.2016.12.014
Reference: [2] Appell, P.: Sur une classe de polynômes.Annales Scientifiques de l'École Normale Supérieure, 9, 1880, 119-144,
Reference: [3] Sun, W.Y.C. Chen,L.H.: Extended Zeilberger's algorithm for identities on Bernoulli and Euler polynomials.Journal of Number Theory, 129, 9, 2009, 2111-2132, Elsevier, MR 2528056, 10.1016/j.jnt.2009.01.026
Reference: [4] Gel'fand, I.M., Shilov, G.E.: Generalized Functions, Vol. 1: Properties and Operations.1964, Acad. Press, New York,
Reference: [5] Gelfand, M.B.: A note on a certain relation among Bernoulli numbers.Baškir. Gos. Univ. Ucen. Zap. Vyp, 31, 1968, 215-216,
Reference: [6] Gessel, I.M.: Applications of the classical umbral calculus.Algebra Univers., 49, 4, 2003, 397-434, MR 2022347, 10.1007/s00012-003-1813-5
Reference: [7] He, Y., Zhang, W.: Some symmetric identities involving a sequence of polynomials.The Electronic Journal of Combinatorics, 17, N7, 2010, 7pp, MR 2587757, 10.37236/456
Reference: [8] Kaneko, M.: A recurrence formula for the Bernoulli numbers.Proceedings of the Japan Academy, Series A, Mathematical Sciences, 71, 8, 1995, 192-193, The Japan Academy,
Reference: [9] Luo, Q.-M., Srivastava, H.M.: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials.Journal of Mathematical Analysis and Applications, 308, 1, 2005, 290-302, Elsevier, MR 2142419, 10.1016/j.jmaa.2005.01.020
Reference: [10] Momiyama, H.: A new recurrence formula for Bernoulli numbers.Fibonacci Quarterly, 39, 3, 2001, 285-288, THE FIBONACCI ASSOCIATION, MR 1840040
Reference: [11] Prévost, M.: Padé approximation and Apostol-Bernoulli and Apostol-Euler polynomials.Journal of computational and applied mathematics, 233, 11, 2010, 3005-3017, Elsevier, MR 2592274, 10.1016/j.cam.2009.11.050
Reference: [12] Rota, G.-C.: The number of partitions of a set.The American Mathematical Monthly, 71, 5, 1964, 498-504, Taylor & Francis, 10.1080/00029890.1964.11992270
Reference: [13] Stern, M.: Beiträge zur Theorie der Bernoullischen und Eulerschen Zahlen.Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen, 26, 1880, 3-46,
Reference: [14] Sun, Z.-W.: Combinatorial identities in dual sequences.European Journal of Combinatorics, 24, 6, 2003, 709-718, Elsevier, MR 1995582, 10.1016/S0195-6698(03)00062-3
Reference: [15] Ettingshausen, A. von: Vorlesungen über die höhere Mathematik.1827, C. Gerold, Vienna,
Reference: [16] Seidel, P.L. von: Uber eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen, Sitzungsberichte der Münch.Akad. Math. Phys. Classe, 7, 1877, 157-187,
Reference: [17] Wu, K.-J., Sun, Z.-W., Pan, H.: Some identities for Bernoulli and Euler polynomials.Fibonacci Quarterly, 42, 4, 2004, 295-299, MR 2110081
.

Files

Files Size Format View
ActaOstrav_29-2021-3_2.pdf 400.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo