Previous |  Up |  Next

Article

Title: G-tridiagonal majorization on $\textbf {M}_{n,m}$ (English)
Author: Mohammadhasani, Ahmad
Author: Sayyari, Yamin
Author: Sabzvari, Mahdi
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 29
Issue: 3
Year: 2021
Pages: 395-405
Summary lang: English
.
Category: math
.
Summary: For $X,Y\in \textbf {M}_{n,m}$, it is said that $X$ is \emph {g-tridiagonal} majorized by $Y$ (and it is denoted by $X\prec _{gt}Y$) if there exists a tridiagonal g-doubly stochastic matrix $A$ such that $X=AY$. In this paper, the linear preservers and strong linear preservers of $\prec _{gt}$ are characterized on $\textbf {M}_{n,m}$. (English)
Keyword: G-doubly stochastic matrix
Keyword: gt-majorization
Keyword: (strong) linear preserver
Keyword: tridiagonal matrices.
MSC: 15A04
MSC: 15A21
idZBL: Zbl 07484376
idMR: MR4355421
.
Date available: 2022-01-10T10:03:56Z
Last updated: 2022-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/149325
.
Reference: [1] Armandnejad, A., Gashool, Z.: Strong linear preservers of g-tridiagonal majorization on $\mathbb R^n$.Electronic Journal of Linear Algebra, 123, 2012, 115-121, MR 2889575
Reference: [2] Armandnejad, A., Mohtashami, S., Jamshidi, M.: On linear preservers of g-tridiagonal majorization on $\mathbb {R}^{n}$.Linear Algebra and its Applications, 459, 2014, 145-153, MR 3247220, 10.1016/j.laa.2014.06.050
Reference: [3] Beasley, L.B., Lee, S.-G., Lee, Y.-H.: A characterization of strong preservers of matrix majorization.Linear Algebra and its Applications, 367, 2003, 341-346, MR 1976930, 10.1016/S0024-3795(02)00657-2
Reference: [4] Bahatia, R.: Matrix Analysis.1997, Springer-Verlag, New York,
Reference: [5] Brualdi, R.A., Dahl, G.: An extension of the polytope of doubly stochastic matrices.Linear and Multilinear Algebra, 6, 3, 2013, 393-408, MR 3003432, 10.1080/03081087.2012.689980
Reference: [6] Chiang, H., Li, C.K.: Generalized doubly stochastic matrices and linear preservers.Linear and Multilinear Algebra, 53, 2005, 1-11, MR 2114138, 10.1080/03081080410001681599
Reference: [7] Hasani, A.M., Radjabalipour, M.: The structure of linear operators strongly preserving majorizations of matrices.Electronic Journal of Linear Algebra, 15, 2006, 260-268, MR 2255479, 10.13001/1081-3810.1236
Reference: [8] Hasani, A.M., Radjabalipour, M.: On linear preservers of (right) matrix majorization.Linear Algebra and its Applications, 423, 2007, 255-261, MR 2312405, 10.1016/j.laa.2006.12.016
Reference: [9] Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of majorization and its applications.2011, Springer, New York, MR 2759813
.

Files

Files Size Format View
ActaOstrav_29-2021-3_6.pdf 371.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo