Title:
|
A note on the volume of $\nabla $-Einstein manifolds with skew-torsion (English) |
Author:
|
Chrysikos, Ioannis |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 (print) |
ISSN:
|
2336-1298 (online) |
Volume:
|
29 |
Issue:
|
3 |
Year:
|
2021 |
Pages:
|
385-393 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study the volume of compact Riemannian manifolds which are Einstein with respect to a metric connection with (parallel) skew\--tor\-sion. We provide a result for the sign of the first variation of the volume in terms of the corresponding scalar curvature. This generalizes a result of M.~Ville \cite {Vil} related with the first variation of the volume on a compact Einstein manifold. (English) |
Keyword:
|
connections with totally skew-symmetric torsion |
Keyword:
|
scalar curvature |
Keyword:
|
$\nabla $-Einstein manifolds |
Keyword:
|
parallel skew-torsion. |
MSC:
|
53B05 |
MSC:
|
53C05 |
MSC:
|
53C25 |
idZBL:
|
Zbl 07484375 |
idMR:
|
MR4355412 |
. |
Date available:
|
2022-01-10T10:02:57Z |
Last updated:
|
2022-04-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149324 |
. |
Reference:
|
[1] Agricola, I., Ferreira, A.C.: Einstein manifolds with skew torsion.Oxford Quart. J., 65, 2014, 717-741, MR 3261964, 10.1093/qmath/hat050 |
Reference:
|
[2] Agricola, I., Friedrich, Th.: On the holonomy of connections with skew-symmetric torsion.Math. Ann., 328, 2004, 711-748, Zbl 1055.53031, MR 2047649, 10.1007/s00208-003-0507-9 |
Reference:
|
[3] Agricola, I., Becker-Bender, J., Kim, H.: Twistorial eigenvalue estimates for generalized Dirac operators with torsion.Adv. Math., 243, 2013, 296-329, MR 3062748, 10.1016/j.aim.2013.05.001 |
Reference:
|
[4] Ammann, B., Bär, C.: The Einstein-Hilbert action as a spectral action.Noncommutative Geometry and the Standard Model of Elementary Particle Physics, 2002, 75-108, MR 1998531 |
Reference:
|
[5] Besse, A.L.: Einstein manifolds.1987, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Zbl 0613.53001 |
Reference:
|
[6] Chrysikos, I.: Invariant connections with skew-torsion and $\nabla $-Einstein manifolds.J. Lie Theory, 26, 2016, 11-48, MR 3384980 |
Reference:
|
[7] Chrysikos, I.: Killing and twistor spinors with torsion.Ann. Glob. Anal. Geom., 49, 2016, 105-141, MR 3464216, 10.1007/s10455-015-9483-z |
Reference:
|
[8] Chrysikos, I.: A new $\frac{1}{2}$-Ricci type formula on the spinor bundle and applications.Adv. Appl. Clifford Algebras, 27, 2017, 3097-3127, MR 3718180, 10.1007/s00006-017-0810-2 |
Reference:
|
[9] Chrysikos, I., Gustad, C. O'Cadiz, Winther, H.: Invariant connections and $\nabla $-Einstein structures on isotropy irreducible spaces.J. Geom. Phys., 138, 2019, 257-284, MR 3945042, 10.1016/j.geomphys.2018.10.012 |
Reference:
|
[10] Draper, C.A., Garvin, A., Palomo, F.J.: Invariant affine connections on odd dimensional spheres.Ann. Glob. Anal. Geom., 49, 2016, 213-251, MR 3485984, 10.1007/s10455-015-9489-6 |
Reference:
|
[11] Draper, C.A., Garvin, A., Palomo, F.J.: Einstein connections with skew-torsion on Berger spheres.J. Geom. Phys., 134, 2017, 133-141, MR 3886931, 10.1016/j.geomphys.2018.08.006 |
Reference:
|
[12] Friedrich, Th., Ivanov, S.: Parallel spinors and connections with skew-symmetric torsion in string theory.Asian J. Math., 6, 1962, 64-94, |
Reference:
|
[13] Friedrich, Th., Kim, E.C.: The Einstein-Dirac equation on Riemannian spin manifolds.J. Geom. Phys., 33, 2000, 128-172, 10.1016/S0393-0440(99)00043-1 |
Reference:
|
[14] Kühnel, W.: Differential Geometry, Curves--Surfaces--Manifolds.2002, Amer. Math. Soc. Student Math. Library, MR 1882174 |
Reference:
|
[15] Ville, M.: Sur le volume des variétés riemanniennes pincées.Bulletin de la S. M. F., 115, 1987, 127-139, |
. |