Summary: Let $R$ be a commutative Noetherian ring, $I$ an ideal of $R$ and $M$ an $R$-module. We wish to investigate the relation between vanishing, finiteness, Artinianness, minimaxness and $\mathcal {C}$-minimaxness of local cohomology modules. We show that if $M$ is a minimax $R$-module, then the local-global principle is valid for minimaxness of local cohomology modules. This implies that if $n$ is a nonnegative integer such that $(H^i_I(M))_{\frak m}$ is a minimax $R_{\frak m}$-module for all $\frak m \in {\rm Max} (R)$ and for all $i < n$, then the set ${\rm Ass}_R(H^n_I(M))$ is finite. Also, if $H^i_I(M)$ is minimax for all $i \geq n \geq 1$, then $H^i_I(M)$ is Artinian for $i \geq n$. It is shown that if $M$ is a $\mathcal {C}$-minimax module over a local ring such that $H^i_I(M)$ are $\mathcal {C}$-minimax modules for all $i < n$ (or $i\geq n$), where $n\geq 1$, then they must be minimax. Consequently, a vanishing theorem is proved for local cohomology modules.
[5] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction With Geometric Applications. Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). DOI 10.1017/CBO9780511629204 | MR 1613627 | Zbl 0903.13006
[10] Huneke, C.: Problems on local cohomology. Free Resolutions in Commutative Algebra and Algebraic Geometry Research Notes in Mathematics. Jones and Bartlett, Boston (1992), 93-108. MR 1165320 | Zbl 0782.13015
[15] Nam, T. T., Nguyen, M. T.: On coatomic modules and local cohomology modules with respect to a pair of ideals. J. Korean Math. Soc. 54 (2017), 1829-1839. DOI 10.4134/JKMS.j160712 | MR 3718427 | Zbl 1401.13052
[17] Rezaei, S.: Minimaxness and finiteness properties of local homology and local cohomology modules. Indian J. Pure Appl. Math. 49 (2018), 383-396. DOI 10.1007/s13226-018-0275-6 | MR 3854443