Previous |  Up |  Next

Article

Title: On the minimaxness and coatomicness of local cohomology modules (English)
Author: Hatamkhani, Marzieh
Author: Roshan-Shekalgourabi, Hajar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 1
Year: 2022
Pages: 177-190
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative Noetherian ring, $I$ an ideal of $R$ and $M$ an $R$-module. We wish to investigate the relation between vanishing, finiteness, Artinianness, minimaxness and $\mathcal {C}$-minimaxness of local cohomology modules. We show that if $M$ is a minimax $R$-module, then the local-global principle is valid for minimaxness of local cohomology modules. This implies that if $n$ is a nonnegative integer such that $(H^i_I(M))_{\frak m}$ is a minimax $R_{\frak m}$-module for all $\frak m \in {\rm Max} (R)$ and for all $i < n$, then the set ${\rm Ass}_R(H^n_I(M))$ is finite. Also, if $H^i_I(M)$ is minimax for all $i \geq n \geq 1$, then $H^i_I(M)$ is Artinian for $i \geq n$. It is shown that if $M$ is a $\mathcal {C}$-minimax module over a local ring such that $H^i_I(M)$ are $\mathcal {C}$-minimax modules for all $i < n$ (or $i\geq n$), where $n\geq 1$, then they must be minimax. Consequently, a vanishing theorem is proved for local cohomology modules. (English)
Keyword: local cohomology module
Keyword: minimax module
Keyword: coatomic module
Keyword: Artinian module
Keyword: local-global principle
MSC: 13C05
MSC: 13D45
MSC: 13E05
idZBL: Zbl 07511560
idMR: MR4389113
DOI: 10.21136/CMJ.2021.0383-20
.
Date available: 2022-03-25T08:29:29Z
Last updated: 2024-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149580
.
Reference: [1] Abbasi, A., Roshan-Shekalgourabi, H., Hassanzadeh-Lelekaami, D.: Artinianness of local cohomology modules.Honam Math. J. 38 (2016), 295-304. Zbl 1346.13030, MR 3526773, 10.5831/HMJ.2016.38.2.295
Reference: [2] Aghapournahr, M., Melkersson, L.: Finiteness properties of minimax and coatomic local cohomology modules.Arch. Math. 94 (2010), 519-528. Zbl 1196.13011, MR 2653668, 10.1007/s00013-010-0127-z
Reference: [3] Bahmanpour, K., Naghipour, R.: On the cofiniteness of local cohomology modules.Proc. Am. Math. Soc. 136 (2008), 2359-2363. Zbl 1141.13014, MR 2390502, 10.1090/S0002-9939-08-09260-5
Reference: [4] Brodmann, M. P., Lashgari, F. A.: A finiteness result for associated primes of local cohomology modules.Proc. Am. Math. Soc. 128 (2000), 2851-2853. Zbl 0955.13007, MR 1664309, 10.1090/S0002-9939-00-05328-4
Reference: [5] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction With Geometric Applications.Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). Zbl 0903.13006, MR 1613627, 10.1017/CBO9780511629204
Reference: [6] Bruns, W., Herzog, J.: Cohen-Macaulay Rings.Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). Zbl 0909.13005, MR 1251956, 10.1017/CBO9780511608681
Reference: [7] Dibaei, M. T., Yassemi, S.: Cohomological dimension of complexes.Commun. Algebra 32 (2004), 4375-4386. Zbl 1093.13011, MR 2102455, 10.1081/AGB-200034165
Reference: [8] Divaani-Aazar, K., Naghipour, R., Tousi, M.: Cohomological dimension of certain algebraic varieties.Proc. Am. Math. Soc. 130 (2002), 3537-3544. Zbl 0998.13007, MR 1918830, 10.1090/S0002-9939-02-06500-0
Reference: [9] Hartshorne, R.: Affine duality and cofiniteness.Invent. Math. 9 (1970), 145-164. Zbl 0196.24301, MR 0257096, 10.1007/BF01404554
Reference: [10] Huneke, C.: Problems on local cohomology.Free Resolutions in Commutative Algebra and Algebraic Geometry Research Notes in Mathematics. Jones and Bartlett, Boston (1992), 93-108. Zbl 0782.13015, MR 1165320
Reference: [11] Lorestani, K. B., Sahandi, P., Yassemi, S.: Artinian local cohomology modules.Can. Math. Bull. 50 (2007), 598-602. Zbl 1140.13016, MR 2364209, 10.4153/CMB-2007-058-8
Reference: [12] Matsumura, H.: Commutative Ring Theory.Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1989). Zbl 0666.13002, MR 1011461, 10.1017/CBO9781139171762
Reference: [13] Melkersson, L.: Modules cofinite with respect to an ideal.J. Algebra 285 (2005), 649-668. Zbl 1093.13012, MR 2125457, 10.1016/j.jalgebra.2004.08.037
Reference: [14] Nam, T. T.: Minimax modules, local homology and local cohomology.Int. J. Math. 26 (2015), Article ID 1550102, 16 pages. Zbl 1349.13037, MR 3432533, 10.1142/S0129167X15501025
Reference: [15] Nam, T. T., Nguyen, M. T.: On coatomic modules and local cohomology modules with respect to a pair of ideals.J. Korean Math. Soc. 54 (2017), 1829-1839. Zbl 1401.13052, MR 3718427, 10.4134/JKMS.j160712
Reference: [16] Payrovi, S., Parsa, M. Lotfi: Finiteness of local cohomology modules defined by a pair of ideals.Commun. Algebra 41 (2013), 627-637. Zbl 1263.13016, MR 3011786, 10.1080/00927872.2011.631206
Reference: [17] Rezaei, S.: Minimaxness and finiteness properties of local homology and local cohomology modules.Indian J. Pure Appl. Math. 49 (2018), 383-396. MR 3854443, 10.1007/s13226-018-0275-6
Reference: [18] Rudlof, P.: On the structure of couniform and complemented modules.J. Pure Appl. Algebra 74 (1991), 281-305. Zbl 0754.13010, MR 1135033, 10.1016/0022-4049(91)90118-L
Reference: [19] Rudlof, P.: On minimax and related modules.Can. J. Math. 44 (1992), 154-166. Zbl 0762.13003, MR 1152672, 10.4153/CJM-1992-009-7
Reference: [20] Yoshida, K.-I.: Cofiniteness of local cohomology modules for ideals of dimension one.Nagoya Math. J. 147 (1997), 179-191. Zbl 0899.13018, MR 1475172, 10.1017/S0027763000006371
Reference: [21] Yoshizawa, T.: Subcategories of extension modules by Serre subcategories.Proc. Am. Math. Soc. 140 (2012), 2293-2305. Zbl 1273.13018, MR 2898693, 10.1090/S0002-9939-2011-11108-0
Reference: [22] Zöschinger, H.: Koatomare Moduln.Math. Z. 170 (1980), 221-232 German. Zbl 0411.13009, MR 0564202, 10.1007/BF01214862
Reference: [23] Zöschinger, H.: Minimax-Moduln.J. Algebra 102 (1986), 1-32 German. Zbl 0593.13012, MR 0853228, 10.1016/0021-8693(86)90125-0
Reference: [24] Zöschinger, H.: Über die Maximalbedingung für radikalvolle Untermoduln.Hokkaido Math. J. 17 (1988), 101-116 German. Zbl 0653.13011, MR 0928469, 10.14492/hokmj/1381517790
.

Files

Files Size Format View
CzechMathJ_72-2022-1_10.pdf 256.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo