Title:
|
Generalized divisor problem for new forms of higher level (English) |
Author:
|
Krishnamoorthy, Krishnarjun |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
72 |
Issue:
|
1 |
Year:
|
2022 |
Pages:
|
259-263 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Suppose that $f$ is a primitive Hecke eigenform or a Mass cusp form for $\Gamma _0(N)$ with normalized eigenvalues $\lambda _f(n)$ and let $X>1$ be a real number. We consider the sum $$ \mathcal {S}_k(X): = \sum _{n<X} \sum _{n=n_1,n_2,\ldots ,n_k} \lambda _f(n_1)\lambda _f(n_2)\ldots \lambda _f(n_k) $$ and show that $\mathcal {S}_k(X) \ll _{f,\epsilon } X^{1-3/(2(k+3))+\epsilon }$ for every $k\geq 1$ and $\epsilon >0$. The same problem was considered for the case $N=1$, that is for the full modular group in Lü (2012) and Kanemitsu et al.\ (2002). We consider the problem in a more general setting and obtain bounds which are better than those obtained by the classical result of Landau (1915) for $k\geq 5$. Since the result is valid for arbitrary level, we obtain, as a corollary, estimates on sums of the form $\mathcal {S}_k(X)$, where the sum involves restricted coefficients of some suitable half integral weight modular forms. (English) |
Keyword:
|
generalized divisor problem |
Keyword:
|
cusp form of higher level |
MSC:
|
11F30 |
MSC:
|
11N37 |
idZBL:
|
Zbl 07511565 |
idMR:
|
MR4389118 |
DOI:
|
10.21136/CMJ.2021.0451-20 |
. |
Date available:
|
2022-03-25T08:32:08Z |
Last updated:
|
2024-04-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149585 |
. |
Reference:
|
[1] Aggarwal, K.: Weyl bound for GL(2) in $t$-aspect via a simple delta method.J. Number Theory 208 (2020), 72-100. Zbl 1446.11092, MR 4032289, 10.1016/j.jnt.2019.07.018 |
Reference:
|
[2] Booker, A. R., Milinovich, M. B., Ng, N.: Subconvexity for modular form $L$-functions in the $t$ aspect.Adv. Math. 341 (2019), 299-335. Zbl 06988563, MR 3872849, 10.1016/j.aim.2018.10.037 |
Reference:
|
[3] Fomenko, O. M.: On summatory functions for automorphic $L$-functions.J. Math. Sci., New York 184 (2012), 776-785. Zbl 1266.11070, MR 2870227, 10.1007/s10958-012-0899-8 |
Reference:
|
[4] Good, A.: The square mean of Dirichlet series associated to cusp forms.Mathematika 29 (1982), 278-295. Zbl 0497.10016, MR 0696884, 10.1112/S0025579300012377 |
Reference:
|
[5] Iwaniec, H., Kowalski, E.: Analytic Number Theory.Colloquium Publications 53. American Mathematical Society, Providence (2004). Zbl 1059.11001, MR 2061214, 10.1090/coll/053 |
Reference:
|
[6] Kanemitsu, S., Sankaranarayanan, A., Tanigawa, Y.: A mean value theorem for Dirichlet series and a general divisor problem.Monatsh. Math. 136 (2002), 17-34. Zbl 1022.11047, MR 1908078, 10.1007/s006050200031 |
Reference:
|
[7] Landau, E.: Über die Anzahl der Gitterpunkte in gewissen Bereichen.Gött. Nachr. 1915 (1915), 209-243 German \99999JFM99999 45.0312.02. |
Reference:
|
[8] Lü, G.: On general divisor problems involving Hecke eigenvalues.Acta. Math. Hung. 135 (2012), 148-159. Zbl 1265.11095, MR 2898795, 10.1007/s10474-011-0150-y |
Reference:
|
[9] Munshi, R.: Sub-Weyl bounds for $GL(2)$ $L$-functions.Available at https://arxiv.org/abs/1806.07352 (2018), 30 pages. |
Reference:
|
[10] Shimura, G.: On modular forms of half integral weight.Ann. Math. (2) 97 (1973), 440-481. Zbl 0266.10022, MR 0332663, 10.2307/1970831 |
Reference:
|
[11] Zhang, W.: Some results on divisor problems related to cusp forms.Ramanujan J. 53 (2020), 75-83. Zbl 07343715, MR 4148459, 10.1007/s11139-019-00199-0 |
. |